Interaction of Novel Ni2+, Cu2+ and VO2+ Complexes of a Tridentate Schiff Base Ligand with DNA, BSA and their Cytotoxic Activity

Document Type: Research Paper

Authors

1 Department of Chemistry, Isfahan University of Technology, Isfahan, Iran, 84156-83111

2 Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Medical Immunology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

In this research, the interaction of [CuL(DMF)], [NiL(DMF)] and [VOL(DMF)] (where L = ((E)-4-((2-amino-5-nitrophenylimino)methyl)benzene-1,3-diol)) complexes derived from tridentate Schiff base ligand with bovine serum albumin (BSA) and DNA was investigated via electronic absorption and fluorescence spectroscopy. The Ultraviolet-Visible (UV-Vis) spectra exhibited an isosbestic point for the complexes through titration with DNA. The experimental results showed the presence of intercalation interaction between the complexes and calf-thymus DNA (CT-DNA). The interaction of BSA protein and complexes was significant. The recorded florescence spectra of complexes interacting with DNA and BSA revealed the static quenching manner. The free binding energies of complexes and their interaction modes with DNA and BSA were determined by the molecular docking. MTT-dye reduction technique was applied to define cytotoxicity of [NiL(DMF)], [CuL(DMF)] and [VOL(DMF)] complexes against breast cancer 4T1 and colon carcinoma C26 cell lines. The [VOL(DMF)] complex had cytotoxic activity against 4T1 and C26 cell lines.

Keywords

[1] Y. Li, Z. Yang, M. Zhou, J. He, X. Wang, Y. Wu, Z.
Wang, J. Mol. Struct. 1130 (2017) 818.
[2] N. Yılmaz Baran, T. Baran, A. Mentes, Appl. Catal.
A. 531 (2017) 36.
[3] L. Ding, Y. Zhang, X. Chen, X. Lü, Inorg. Chem.
Commun. 76 (2017) 100.
[4] G. Kalaiarasi, R. Jain, H. Puschman, S.P. Chandrika,
K. Preethi, R. Prabhakaran, New J. Chem. 41 (2017)
2543.
[5] M.P. Kesavan, G.G. Vinoth Kumar, J.
DhaveethuRaja, K. Anitha, S. Karthikeyan, J. Rajesh,
J. Photochem. Photobiol., B: Biology 167 (2017) 20.
[6] N.Z. Li, H. Li, X. Li, J. Dou, S.Wang, RSC Adv. 5
(2015) 37085.
[7] S.P. Dash, A.K. Panda, S. Dhaka, S. Pasayat, A.
Biswas, M.R. Maurya, P.K. Majhi, A. Crochet, R.
Dinda, Dalton Transactions 45 (2016) 18292.
[8] M. Niu, M. Hong, G.Chang, X. Li, Z. Li, J.
Photochem. Photobiol. B. 148 (2015) 232.
[9] A. Terenzi, M. Fanelli, G. Ambrosi, S. Amatori, V.
Fusi, L. Giorgi, V.T. Liveria, G. Barone, Dalton
Transication 41 (2012) 4389.
[10] P. Li, M. Niu, M. Hong, S. Cheng, J.M. Dou, J. Inorg.
Biochemistry 137 (2014) 101.
[11] S.P. Dash, A.K. Panda, S. Pasayat, S. Majumder, A. 
Biswas, W. Kaminsky, S. Mukhopadhyay, S.K.
Bhutia, R. Dinda, J. Inorg. Biochem. 144 (2015) 1.
[12] A.H. Kianfar, M. Dostani J. Mater. Sci.: Mater. In
Electron. 28 (2017) 7353.
[13] S.M. Kumar, K. Dhahagani, J. Rajesh, K. Nehru, J.
Annaraj, G. Chakkaravarthi, G. Rajagopal,
Polyhedron 59 (2013) 58.
[14] A. Koch, P. Tamez, J. Pezzuto, D. Soejarto, J.
Ethnopharmacol. 101(1) (2005) 95.
[15] H. Park, J. Lee, S. Lee, Proteins: Struct. Funct. Bioinf.
65 (2006) 549.
[16] http://www.rcsb.org.
[17] Hetényi, D. van der Spoel., FEBS Lett. 580 (2006)
1447.
[18] Hetényi C, van der Spoel D. Protein Science : A
Publication of the Protein Society. 20 (2011) 880.
[19] A.C. Wallace, R.A. Laskowski, J.M. Thornton,
Protein Eng. 8 (1995) 127.
[20] R. Fekri, M. Salehi, A. Asadi, M. Kubicki,
Polyhedron 1059 (2014) 299.
[21] M. Sedighipoor, A.H. Kianfar, W.A. Kamil
Mahmood, M.H. Azarian, Polyhedron 46 (2014) 145.
[22] Q. Guo, L. Li, J. Dong, H. Liu, T. Xu, J. Li,
Spectrochim. Acta Part A: Molecular and Biomol.
Spectroscopy 106 (2013) 155.
[23] R. Esteghamat-Panah, H. Hadadzadeh, H.
Farrokhpour, M. Mortazavi, Z. Amirghofran, Inorg.
Chimica Acta 41 (2006) 393.
[24] A. Blake, A.R. Peacocke, Biopolymers 5 (1967) 871.
[25] L.H. Abdel-Rahman, R.M. El-Khatib, L.A.E. Nassr,
A.M. Abu-Dief, J. Mol. Struct. 1040 (2013) 9.
[26] N. Nanjundan, P. Selvakumar, R. Narayanasamy, R.
A. Haque, K. Velmurugan, R. Nandhakumar, T.
Silambarasan, R. Dhandapani, J. Photochem.
Photobiol. B: Biology 31 (2012) 294.
[27] F. Arjmand, A. Jamsheera, M. Afzal, S. Tabassum,
Chirality 24 (2012) 977.
[28] P. Sathyadevi, P. Krishnamoorthy, E. Jayanthi, R. R.
Butorac, A.H. Cowley, N. Dharmaraj, Inorg. Chim.
Acta 384 (2012) 83.
[29] P. Li, M.J. Niu, M. Hong, S. Cheng, J.M. Dou, J.
Inorg. Biochem. 8 (2003) 626.
[30] L. Andrezálová, J. Plšíková, J. Janočková, K.
Koňariková, I. Žitňanová, M. Kohútová, M.
Kožurková, J. Organometallic Chem. 827 (2017) 67.
[31] M. Dakovic’, H. Cicak, Z. Soldin, V. Tralic-
Kulenovic, J. Mol. Struct. 938 (2009) 125.
[32] V. Uma, M. Kanthimathi, T. Weyhermuller, B.U.
Nair, J. Inorg. Biochem. 99 (2005) 2299.
[33] Q. Zhou, P. Yang, Inorg. Chim. Acta 359 (2006)
1200.
[34] Y. Li, Y. Wu, J. Zhao, P. Yang, J. Inorg. Biochem.
101 (2007) 283.

Volume 3, Issue 2
Summer and Autumn 2019
Pages 95-107
  • Receive Date: 30 May 2019
  • Revise Date: 01 October 2019
  • Accept Date: 01 October 2019