Synthesis of Zinc Dimethyldithiocarbamate by Reductive Disulfide Bond Cleavage of Tetramethylthiuram Disulfide in Presence of Zn2+

Document Type : Research Paper

Authors

1 Department of Chemistry, Isfahan University of Technology

2 Faculty of Chemistry, Vienna University of Technology

Abstract

The zinc(II) complex [Zn2(dmdtc)2(μ-dmdtc)2] has been synthesized directly from thiram ligand, containing a disulfide bond {dmdtc = N,N-dimethyldithiocarbamate; thiram = N,N-tetramethylthiuram disulfide}, and characterized by elemental analysis and spectroscopic methods. Surprisingly thiram, undergoes a reductive disulfide bond scission upon reaction with Zn2+ in methanolic media to give the [Zn2(dmdtc)2(μ-dmdtc)2] complex. The crystal structure of Zn(II) complex has been determined by single crystal X-ray diffraction. Zinc is 4+1 coordinate, with four nearly identical tetrahedral bonds and a longer fifth bond being similar to some reported [Zn(dtc)2(L)] complexes. The crystal structure of this complex is built up of dimeric units, [Zn(dmdtc)(μ-dmdtc)2], so that each unit has two thiocarbamate groups, one wholly bound to a zinc atom as a bidentate ligand and the other in a bridging coordination mode between the two Zn(II) atoms. This structure clearly shows scission of the disulfide bond in the thiram ligand to give two dimethyldithiocarbamate ligands coordinated to the Zn(II) ion.

Keywords


[1] T. Haley, Drug Metab. Rev. 9 (1979) 310.
[2] F.W. Sunderman, J. New Drugs 4 (1964) 154.
[3] G. Vettorazzi, W.F. Almeida, G.J. Burin, R.B. Jaeger,
F.R. Puga, A.F. Rahde, F.G. Reyes, S. Schvartsman,
Teratogen. Carcinogen. Mutagen. 15 (1995) 313.
[4] World Health Orgnization, Dithiocarbamate
pesticides, ethylenethiourea and propylenethiourea: A
general introduction, Enviromental Health Criteria 78
(1988) 11.
[5] J. Hail, V. Larsen, Acta Pharmacol. Toxicol. 5 (1949)
292.
[6] E.H. Strømme, Biochem. Pharmacol. 14 (1965) 391.
[7] D.I. Eneanya, J.R. Bianchine, D.O. Duran, G.D.
Andresen, Ann. Rev. Pharmacol. Toxicol. 21 (1981)
575.
[8] G. Danscher, E. Hall, K. Fredens, E. Fjerdingestad,
E.J. Fjerdingestad, Brain Res. 94 (1975) 167.
[9] J. Aaseth, N.E. Søli, Ø. Forre, Acta Pharmacol.
Toxicol. 45 (1979) 41.
[10] ] H.P. Klug, Acta Cryst. 21 (1966) 536.
[11] Bruker Computer Programs APEX2, SAINT, and
SADABS. Bruker AXS Inc., Madison, Wisconsin,
USA, 2008
[12] G.M. Sheldrick, Acta Cryst. Sect. A 64 (2008) 112.
[13] M. Amirnasr, M. Bagheri, H. Farrokhpour, K.J.
Schenk, K. Mereiter, P.C. Ford, Polyhedron 71 (2014)
1.
[14] K.Ramalingam, O.bin Shawkataly, H.-K. Fun, I.A.
Razak, Z. Kristallogr, New Cryst. Struct. 213 (1998)
371.
[15] I. Baba, Y. Farina, K. Kassim, A.H. Othman, I.A.
Razak, H.-K. Fun, S.W. Ng, Acta Crystallogr, Sect. E:
Struct. Rep. Online, 57 (2001) m55.
[16] N. Sreehari, B. Varghese, P.T. Manoharan, Inorg.
Chem. 29 (1990) 4011.
[17] Y. Wang, L.-H. Yan, L.-D. Lu, Wuji Huaxue Xuebao,
Chin. J. Inorg. Chem. 22 (2006) 1728
[18] M. Motevalli, P. O'Brien, J.R. Walsh, I.M. Watson,
Polyhedron 15 (1996) 2801
[19] S. Thirumaran, V. Venkatachalam, A. Manohar, K.
Ramalingam, G. Bocelli, A. Cantoni, J. Coord. Chem.
44 (1998) 281.
[20] G. Hogarth, E.-J.C.-R.C.R. Rainford-Brent, I.
Richards, Inorg. Chim. Acta 362 (2009) 1361
[21] A. Decken, R.A. Gossage, M.Y. Chan, C.S. Lai,
E.R.T. Tiekink, Appl. Organomet. Chem. 18 (2004)
101.
[22] A.V. Ivanov, O.N. Antzutkin, Polyhedron 21 (2002)
2727.
[23] M.M. Milosavljević, A.D. Marinković, J.M.
Marković, D.V. Brković, M.M. Milosavljević, Chem.
Indus. Chem. Eng. Quarterly 18 (2012) 73.
[24] A. Majumder, G.M. Rosair, A. Mallick, N.
Chattopadhyay, S. Mitra, Polyhedron 25 (2006) 1753.
[25] A.G. Atanasov, S. Tam, J.M. Rocken, M.E. Baker, A.
Odermatt, Biochem. Biophys. Res. Commun. 308
(2003) 257.