Faculty of Sciences, Department of Chemistry, Kosar University of Bojnord, Iran
10.22036/icr.2021.304989.1118
Abstract
Nano-magnetic ferrite ZnFe2O4 among other magnetic nanoparticles include Fe2O3, Fe3O4, Ni(0.7)Zn(0.3)Fe2O4 and Mn(0.7)Zn(0.3)Fe2O4 was explored as an efficient catalyst for the synthesis of various 4H-Chromenes and 4H-Pyrano[2,3-c]pyrazoles in EtOH/H2O (2:1) via an easy and green procedure. The desired products were obtained in high yields via a three-component reaction between aromatic aldehydes with malononitrile and 5,5-dimethyl-cyclohexane-1,3-dione or 3-methyl-1-phenyl-2-pyrazolin-5-one at room temperature. The structure of this catalyst was fully characterized via Fourier transform infrared spectroscopy, XRD, SEM, TEM, EDAX, and VSM. The employed nanocatalyst was easily recovered using a magnetic field and reused ten times (in subsequent runs) without observation a significant decrease in activity.
B. N. Baig, R. S. Varma, Chem. Commun.2012, 48, 2582-2584.
Maleki, Z. Varzi, F. Hassanzadeh-Afruzi, Polyhedron, 2019, 171, 193-202.
Taqi Jafari-Chermahini, H. Tavakol, Chem. Select.2019, 4, 1895-1902.
Cullity, Elements of X-Ray Diffraction, Addison Wesley Inc, 1977.
Sreekumar, T. Raja, B. Kiran, S. Sugunan, B. Rao, Appl. Catal. A.1999, 182, 327-336.
B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory, New York, Wiley, 1996.
Burns, Mineralogical Applications of Crystal Field Theory, Cambridge: Cambridge University Press, 1993.
J. Borg, G. J. Dienes, Physical Chemistry of Solids (Academic: San Diego, CA), 1992.
Goldman, Modem Ferrite Technology, 2nd ed., P. A. Pittsburgh, USA, 1987.
Zhu, K. J. Tseng, IEEE Trans. Magn.2004, 40, 3339-3345.
Dömling, I. Ugi, Angew. Chem. Int. Ed.2000, 39, 3168-3210.
Ganem, Acc. Chem. Res.2009, 42, 463-472.
Brase, C. Gil, K. Knepper, Bioorg. Med. Chem.2002, 10, 2415-2437.
L. Andreani, E. Lapi, Bull. Chim. Farm.1960, 99, 583-586.
Gao, C. H. Tsai, C. Tseng, C. F. Yao, Tetrahedron, 2008, 64, 9143-9149.
Kumar, V. B. Reddy, S. Sharad, U. Dube, S. Kapur, Eur. J. Med. Chem.2009, 44, 3805.
Shi, J. Mou, Q. Zhuang, L. Niu, N. Wu, X. Wang, Synth. Commun.2004, 34, 4557-4263.
S. Jin, A. Q. Wang, Z. L. Cheng, J. S. Zhang, T. Li, Synth. Commun.2005, 35, 137-143.
B. Guo, S. X. Wang, J. T. Li, Synth.Commun.2007, 37, 2111-2120.
Azarifar, R. Nejat-Yami, D. Azarifar, J. Iran. Chem. Soc.2013, 10, 439-446.
S. Jin, R. Q. Zhao, T. S. Li, Arkivoc, 2006, 11, 176-182.
Sheibani, M. Babaie, Synth. Commun.2010, 40, 257-265.
Azarifar, R. Nejat-Yami, M. A. Zolfigol, J.Heterocycl. Chem.2013, 50, 1386-1390.
A. Zolfigol, T. Azadbakht, V. Khakyzadeh, R. Nejat Yami, D. M. Perrin, RSC Adv.2014, 4, 40036-40042.
Azarifar, R. Nejat-Yami, Z. Akrami, F. Sameri, S. Samadi, Lett. Org. Chem.2012, 9, 128-132.
Balali, M. Bagherzadeh, R. Nejat, H. Keypour, Inorg. Chem. Res.2021, 5, 82-93.
Khaksar, A. Rouhollahpour, S. M. Talesh, J.Fluorine Chem.2012, 141, 11-15.
Azarifar, Y. Abbasi, O. Badalkhani, J. Adv.Chem.2014, 10, 3197-3202.
Fang, H. B. Zhang, Z. L. Liu, J. Heterocycl.Chem.2010, 47, 63-67.
Azarifar, S. M. Khatami, R. Nejat-Yami, J. Chem.Sci.2014, 126, 95-101.
C. Xu, W. M. Li, Z. Zheng, Y. F. Lai, P. F. Zhang, Tetrahedron. 2011, 67, 9582-9587.
Q. Yu, F. Liu, Q. D. You, Org. Prep. Proced. Int.2009, 41, 77-82.
Balalaie, M. Bararjanian, M. Sheikh-Ahmadi, S. Hekmat, P. Salehi, Synth. Commun.2007, 37, 1097-1108.
Sarrafi, E. Mehrasbi, A. Vahid, M. Tajbakhsh, Chin. J. Catal.2012, 33, 1486-1494.
S. Jin, A. Q. Wang, Z. L. Cheng, J. S. Zhang, T. S. Li, Synth. Commun.2005, 35, 137-143.
B. Guo, S. X. Wang, J. T. Li, Synth.Commun.2007, 37, 2111-2120.
G. Sharanina, V. K. Promonenkov, V. P. Marshtupa, A. V. Pashchenko, V. V. Puzanova, Yu. A. Sharanin, N. A. Klyuev, L. F. Gusev, A. P. Gnatusina, Chem. Het. Comp.1982, 18, 1-7.
Saha, S. Payra, S. Banerjee, Green Chem.2015, 17, 2859-2866.
Farahi, B. Karami, I. Sedighimehr, H. Mohamadi Tanuraghaj, Chin. Chem. Lett.2014, 25, 1580-1582.
Saha, S. Payra, S. Banerjee, Green Chem.2015, 17, 2859-2866.
M. Silverstein, F. X. Webster, D. J. Kiemle, D. L. Bryce, Spectrometric Identification of Organic Compounds, Wiley, New York, 2014.
A. Hosseini, V. Majidi, A. R. Abbasian, J. Sulfur.Chem.2018, 39, 119-129.
Kurian, M. J. Mathew, J. Magn. Magn. Mater.2018, 451, 121-130.
Araghi, M. Ghahari, M. S. Afarani, J. Environ.Chem. Eng.2017, 5, 1780-1790.
M. Naiini, M. Ghahari, M. S. Afarani, Part Sci.Technol.2015, 33, 456-462.
R. Amiri, M. H. Yousefi, M. R. Abolhassani, S. Manouchehri, M. H. Keshavarz, S. Fatahian, J.Magn. Magn. Mater.2011, 323, 730-734.
Li, H. Wang, L. Wang, J. Wang, J. Magn. Magn. Mater.2007, 309, 295-299.
Massart, IEEE Trans. Magn.1981, 17, 1247-1248.
Predescu, Bulletin of the Polytechnic Institute of Jassy, LVI (LX), 2010, 2, 95-102.
A. Legodi, D. de Waal, Dyes Pigments. 2007, 74, 161-168.
L. A. Faria, S. V. Silva, M. T. Oliveira, J. Raman.Spectrosc.1997, 28, 873-878.
Nejat, R. (2022). Nano-Ferrite ZnFe2O4: as Efficient and Re-Usable Catalyst for the synthesis of 4H-Chromenes and 4H-Pyrano[2,3-c]pyrazoles. Inorganic Chemistry Research, 6(1), 10-16. doi: 10.22036/icr.2021.304989.1118
MLA
Razieh Nejat. "Nano-Ferrite ZnFe2O4: as Efficient and Re-Usable Catalyst for the synthesis of 4H-Chromenes and 4H-Pyrano[2,3-c]pyrazoles". Inorganic Chemistry Research, 6, 1, 2022, 10-16. doi: 10.22036/icr.2021.304989.1118
HARVARD
Nejat, R. (2022). 'Nano-Ferrite ZnFe2O4: as Efficient and Re-Usable Catalyst for the synthesis of 4H-Chromenes and 4H-Pyrano[2,3-c]pyrazoles', Inorganic Chemistry Research, 6(1), pp. 10-16. doi: 10.22036/icr.2021.304989.1118
VANCOUVER
Nejat, R. Nano-Ferrite ZnFe2O4: as Efficient and Re-Usable Catalyst for the synthesis of 4H-Chromenes and 4H-Pyrano[2,3-c]pyrazoles. Inorganic Chemistry Research, 2022; 6(1): 10-16. doi: 10.22036/icr.2021.304989.1118