Comparative study on the effect of transition metal (Zn2+) and alkaline earth metal (Mg2+) ions on adsorption-release of diclofenac and ibuprofen on nano M-Al-LDH as drug carriers

Document Type : Research Paper

Authors

Department of Chemistry, Payame Noor University (PNU), P.O. Box: 19395-3697, Tehran, Iran

Abstract

In this project, three nanoscale M-Al LDHs, which M is a divalent metal (Mg2+, Zn2+ and/or a mixture of them and LDH = Layered Double Hydroxide) were synthesized by co-precipitation and characterized by general techniques, such as FTIR, XRD, FESEM, and EDS. LDHs have got different physical properties, such as; crystal size, lattice parameters, morphology and drug delivery. These M-Al LDHs were used as drug carriers for diclofenac and ibuprofen, which adsorption and release percentages of drugs by them were studied and compared. The results showed that Al-LDHs including transition metal (Zn2+) are suitable for drug delivery purposes. As the mixed divalent (Zn/Mg)-Al LDHs are more efficient drug carriers for both diclofenac and ibuprofen drugs.

Graphical Abstract

Comparative study on the effect of transition metal (Zn2+) and alkaline earth metal (Mg2+) ions on adsorption-release of diclofenac and ibuprofen on nano M-Al-LDH as drug carriers

Keywords


1. T. Gaurav, R. Tiwari, B. Sriwastawa, L. Bhati, S.
Pandey, P. Pandey, S. K. Bannerjee, Int. J.Pharm.
Investig., 2012, 1, 2-11.
2. M. R. Rekha, C. P. Sharma, Peptide and Protein
Delivery, Chapter 8, Nanoparticle Mediated Oral
Delivery of Peptides and Proteins: Challenges and
Perspectives, Elsevier, 2011, pp. 165-194.
3. Z. Kai, Z. P. Xu, J. Lu, Z. Y. Tang, H. J. Zhao, D. A.
Good, M. Q. Wei, Int. J. Mol. Sci. 2014, 15, 7409-7428.
4. J. Arulraj, Intercalation of Organic anions and IntraCrystalline Reactions in Anionic Clays. Ph.D. Thesis,
Manipal University, Manipal, India, 2013.
5. L. Katharina, Z. P. Xu, G. Q. Lu, Expert Opin. Drug.
Deliv., 2009, 9, 907-922.
6. P. D. Hwan, S. Hwang, J. M. Oh, J. H. Yang, J. H.
Choy, Prog. Polym. Sci., 2013, 38, 1442-1486.
7. A. M. Scott, K. A. Carrado, P. K. Dutta, Handbook of
layered materials. CRC press, 2004.
8. M. Shigeo, Clays Clay Miner., 1983, 31, 305-311.
9. O. C. W. Jr, T. Olorunyolemi, A. Jaworski, L. Borum,
D. Young, A. Siriwat, E. Dickens, C. Oriakhi, M.
Lerner, Appl. Clay Sci., 1999, 15, 265-279.
10. T. G. Christine, Y. Feng, A. Faour, F. Leroux, Dalton
Trans., 2010, 39, 5994-6005.
11. C. S. Jin, J. H. Choy, Nanomedicine, 2011, 6, 803-
814.
12. L. M. Shu, P. Sun, H. Y. Yu, J. Formo. Med. Assoc.,
1998, 97, 704-710.
13. N. Kobra, L. Shojaei, A. Heidari, M. Heidarifard, M.
Sharbati, A. Mahari, R. Hosseinzadeh-Khanmiri,
Polyhedron, 2019, 170, 659-665.
14. G. Shengwei, X. Wang, Z. Gao, G. Wang, M. Nie.
Ultrason. Sonochem., 2018, 48, 19-29.
15. D. M. Antonio, O. A. Guselnikova, M. E. Trusova, P.
S. Postnikov, V. Sedlarik, Int. J. Pharm., 2017, 526,
380-390.
16. T. Fangqiong, L. Li, D. Chen, J. Adv. Mater., 2012,
24, 1504-1534.
17. Y. Piaoping, S. Gai, J. Lin, Chem. Soc. Rev., 2012, 41,
3679-3698.
18. G. Lingling, H. Chen, N. He, Y. Deng, Chin. Chem.
Lett., 2018, 29, 1829-1833.
19. C. Shizhu, X. Hao, X. Liang, Q. Zhang, C. Zhang, G.
Zhou, S. Shen, G. Jia, J. Zhang, J. Biomed. Nanotechn.,
2016, 12, 1-27.
20. V. K. A. Shirin, R. Sankar, A. P. Johnson, H. V.
Gangadharappa, K. Pramod, J. Control Release, 2021,
10, 398-426.
21. M. Aquib, M. A. Farooq, P. Banerjee, F. Akhtar, M.
S. Filli, K. O. B. Yiadom, S. Kesse, J. Biomed. Mater.
Res. A, 2019, 107, 2643-2666.
22. M. Tatsuya, K. Tsuchida, Mini Rev. Med. Chem.,
2008, 8, 175-183.
23. T. S. Andrzej, M.Tomikawa, M. Ohta, I. J. Sarfeh, J.Physiol. Paris, 2000, 94, 93-98.
24. K. I. Aamir, A. Ragavan, B. Fong, C. Markland, M.
O’Brien, T. G. Dunbar, G. R. Williams, D. O’Hare, Ind.
Eng. Chem. Res.,2009, 48, 10196-10205.
25. C. S. Jin, J. M. Oh, J. H. Choy, J. Nanosci.
Nanotechnol., 2010, 10, 2913-2916.
26. J. Panyam; V. Labhasetwar, Adv. Drug Deliv. Rev.
2012, 64, 61-71.
27. C. J. Ho, J. S. Jung, J. M. Oh, M. Park, J. Jeong, Y.
K. Kang, O. J. Han, Biomaterials, 2004, 25, 3059-3064.
28. P. Tamara, F. Bellezza, L. Tarpani, S. Perni, L.
Latterini, V. Marsili, A. Cipiciani, Appl. Clay Sci.,
2012, 55, 62-69.
29. F. Cavani, F. Trifiro, A. Vaccari, Catal. Today, 1991,
11, 173-301.
30. K. I. Aamir, D. O’Har, J. Mater. Chem., 2002, 12,
3191-3198.
31. E. G. David, X. Duan, Chem. Commun., 2006, 5, 485-
496.
32. W. R. Gareth, D. O'Hare, J. Mater. Chem., 2006, 16,
3065-3074.
33. Q. Wang, D. O,Hare, Chem. Rev, 2012, 112, 4124-
4155.
34. X. Z. Ping, G. S. Stevenson, C. Q. Lu, G. Q. Lu, P. F.
Bartlett, P. P. Gray, J. Am. Chem. Soc., 2006, 128, 36-
37.
35. B. Xue, H. Zhang, L. Dou. Pharmaceutics, 2014, 6,
298-332.
36. B. Zaineb, M. A. Djebbi, L. Soussan, J. M. Janot, A.
B. H. Amara, S. Balme, Mater. Sci. Eng. C, 2017, 76,
673-683.
37. C. Gabriela, H. Chiriac, N. Lupu, J. Magn. Magn.
Mater., 2007, 311, 26-30.
38. D. E. Li, G. Gou, L. Jiao, Acta Pharm. Sin. B., 2013,
3, 400-407.
39. O. J. Min, M. Park, S. T. Kim, J. Y. Jung, Y. G. Kang,
J. H. Choy, J. Phys. Chem. Solids, 2006, 67, 1024-1027.
40. R. Vicente, M. Arco, C. Martín, J. Control. Release,
2013, 169, 28-39.
41. N. Safila, F. Qamar, J. Innov. Pharm., 2014, 1, 92-96.
42. H. R. Mardani, Res. Chem. Intermed., 2017, 43, 5795-
5810.
43. V. R. Magri, A. Duarte, G. F. Perotti, V. R. L.
Constantino, Chem. Engineering, 2019, 3, 55-62.
44. A. K. Vashishtha, J. Wang, W. H. Konigsberg, J. Biol.
Chem., 2016, 291, 20869-20875.
45. R. Elmoubarki, F. Z. Mahjoubi, A. Elhalil, H.
Tounsadi, M. Abdennouri, M. Sadiq, S. Qourzal, A.
Zouhri, N. Barka, J. Mater. Res. Technol., 2017, 6, 271-
283.
46. Z. Xu, Ping, G. Q. M. Lu, Pure Appl. Chem., 2006,
78, 1771-1779.
47. R. D. Hancockand, E. A. Martell, J. Chem. Educ.,
1996, 73, 654.
48. V. Leeuwen, P. Herman, Environ. Sci. Technol., 1999,
33, 3743-3748.
49. G. Zi, A. Wu, L. Li, Z. P. Xu. Pharmaceutics, 2014, 6,
235-248.
50. C. Zhenbang, B. Li, L. Sun, L. Li, Z. P. Xu, Z. Gu,
Small Methods,2020, 4, 1900343-1900362.