A DFT Study of Selenium-Cyclic Peptide Anticancer Nanocarrier

Document Type : Research Paper

Authors

1 Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran

Abstract

Using Se8 selenium and cyclic peptides and nanoparticles (SeCPNP), six configurations for the adsorption of the 5-fluorouracil (FU) anticancer drug on SeCPNP have been examined (SeCPNP/FU1-6). Binding energies, solvation energies and quantum molecular descriptors such as electrophilicity (ω) and global hardness (η) in the aqueous solution and gas phase were studied at the density functional level of M06-2X. The most stable structure by binding energy calculations was determined. The values obtained from solvation energies indicate that SeCPNPs can increase the solubility of FU, which is a key factor in drug delivery. According to quantum molecular descriptors, the reactivity of cyclic peptide (CP) and FU drug in all structures (SeCPNP / FU 1-6) increases. AIM calculations for all structures show that Se-A interactions (A = O, H, N, F, C) and intermolecular hydrogen bonding play an important role for this drug delivery system. In structures where FU is parallel to SeCPNP and undergoes interactions concurrently with Se8 and CP, it is more stable than structures in which the drug undergoes interactions only with Se8 and CP.

Graphical Abstract

A DFT Study of Selenium-Cyclic Peptide Anticancer Nanocarrier

Keywords


[1] S. Fernandez-Lopez, H.-S. Kim, E.C. Choi, M.
Delgado, J.R. Granja, A. Khasanov, K. Kraehenbuehl,
G. Long, D.A. Weinberger, K.M. Wilcoxen, Nature
412 (2001) 452.
[2] S.C. Larnaudie, J.C. Brendel, I. Romero-Canelón, C.
Sanchez-Cano, S. Catrouillet, J. Sanchis, J.P.
Coverdale, J.-I. Song, A. Habtemariam, P.J. Sadler,
Biomacromolecules 19 (2018) 239.
[3] A.J. Ellison, I.C. Tanrikulu, J.M. Dones, R.T. Raines,
Biomacromolecules 21 (2020) 1539.
[4] A. Ortiz-Acevedo, H. Xie, V. Zorbas, W.M. Sampson,
A.B. Dalton, R.H. Baughman, R.K. Draper, I.H.
Musselman, G.R. Dieckmann, J. Am. Chem. Soc. 127
(2005) 9512.
[5] M. Shahabi, H. Raissi, J. Mol. Liq. 268 (2018) 326.
[6] B. Claro, M. Bastos, R. Garcia-Fandino, Peptide
Applications in Biomedicine, Biotechnology and
Bioengineering, Elsevier, 2018.
[7] A. Zorzi, K. Deyle, C. Heinis, Curr. Opin. Chem. Biol.
38 (2017) 24.
[8] S.E. Park, M.I. Sajid, K. Parang, R.K.M.P. Tiwari,
Mol. Pharm. 16 (2019) 3727.
[9] D. Mandal, A. Nasrolahi Shirazi, K. Parang, Angew.
Chem. Int. Ed. 50 (2011) 9633.
[10] X. Jing, K.J.M.R.R. Jin, Med. Res. Rev. 40 (2020)
753.
[11] P.G. Dougherty, A. Sahni, D. Pei, Chem. Rev. 119
(2019) 10241.
[12] D.B. Longley, D.P. Harkin, P.G. Johnston, Nat. Rev.
Cancer 3 (2003) 330.
[13] M. Rahbar, A. Morsali, M.R. Bozorgmehr, S.A.
Beyrmabadi, J. Mol. Liq. 302 (2020) 112495.
[14] M.S. Aapro, C. Martin, S. Hatty, Antcancer Drugs 9
(1998) 191.
[15] M. Najafi, A. Morsali, M.R. Bozorgmehr, Struct.
Chem. (2018) 1.
[16] K. Renu, V. Abilash, T.P. PB, S. Arunachalam, Eur. J.
Pharmacol. 818 (2018) 241.[17] J.D. Sara, J. Kaur, R. Khodadadi, M. Rehman, R.
Lobo, S. Chakrabarti, J. Herrmann, A. Lerman, A.
Grothey, Ther. Adv. Med. Oncol. 10 (2018)
1758835918780140.
[18] L. Metterle, C. Nelson, N. Patel, J. Am. Acad.
Dermatol. 74 (2016) 552.
[19] J.J. Lee, J.H. Beumer, E. Chu, Cancer Chemother.
Pharmacol. 78 (2016) 447.
[20] X.-S. Xian, H. Park, M.-G. Choi, J.M. Park,
Anticancer Res. 33 (2013) 2541.
[21] D.C. Luther, R. Huang, T. Jeon, X. Zhang, Y.-W. Lee,
H. Nagaraj, V. Rotello, Adv. Drug Deliv. Rev. 156
(2020) 188.
[22] F. Naghavi, A. Morsali, M.R. Bozorgmehr, J. Mol.
Liq. 282 (2019) 392.
[23] Z. Shabani, A. Morsali, M.R. Bozorgmehr, S.A.
Beyramabadi, Chem. Phys. Lett. 719 (2019) 12.
[24] S. Khani, M. Montazerzohori, R. Naghiha, S. Joohari,
Inorg. Chem. Res. 4 (2020) 279.
[25] R. Ye, S. Wang, J. Wang, Z. Luo, Q. Peng, X. Cai, Y.
Lin, Curr. Drug Metab. 14 (2013) 910.
[26] M. Lotfi, A. Morsali, M.R. Bozorgmehr, Appl. Surf.
Sci. 462 (2018) 720.
[27] M.L. Girase, P.G. Patil, P.P. Ige, P. Biomaterials, Int.
J. Polymer. Mater. 69 (2020) 990.
[28] M. Nasrabadi, A. Morsali, S.A. Beyramabadi, Int. J.
Biol. Macromol. 165 (2020) 1229.
[29] B.M. Cooper, J. Iegre, D.H. O'Donovan, M.Ö.
Halvarsson, D.R. Spring, Chem. Soc. Rev. (2021).
[30] Y. Zhang, H.F. Chan, K.W. Leong, Adv. Drug Deliv.
Rev. 65 (2013) 104.
[31] J. Yang, E. Lee, M. Ku, Y.M. Huh, J.H. Cheong,
Anticancer Agents Med. Chem. 13 (2013) 212.
[32] M. Silhol, M. Tyagi, M. Giacca, B. Lebleu, E. Vivès,
Eur. J. Biochem. 269 (2002) 494.
[33] G. Yang, R. Zhou, J. Trace Elem. Electrolytes Health
Dis. 8 (1994) 159.
[34] D. Wang, E.W. Taylor, Y. Wang, X. Wan, J. Zhang,
Int. J. Nanomedicine 7 (2012) 1711.
[35] F. Yang, Q. Tang, X. Zhong, Y. Bai, T. Chen, Y.
Zhang, Y. Li, W. Zheng, Int. J. Nanomedicine 7 (2012)
835.
[36] F. Naghavi, A. Morsali, M.R. Bozorgmehr, S.A.
Beyramabadi, J. Mol. Liq. 310 (2020) 113155.
[37] M. Nasrabadi, S.A. Beyramabadi, A. Morsali, Int. J.
Biol. Macromol. 147 (2020) 534.
[38] H. Lari, A. Morsali, M.M. Heravi, Z. Phys. Chem. 232
(2018) 579.
[39] M. Teymoori, A. Morsali, M.R. Bozorgmehr, S.A.
Beyramabadi, Bull. Korean Chem. Soc. 38 (2017) 869.
[40] Y.B. Zheng, B. Kiraly, T.J. Huang, Nanomedicine 5
(2010) 1309.
[41] V. Linko, A. Ora, M.A. Kostiainen, Trends Biotechnol.
33 (2015) 586.
[42] Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Theory
Comput. 2 (2006) 364.
[43] Y. Zhao, D.G. Truhlar, J. Chem. Phys. 125 (2006)
194101.
[44] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M.
Robb, J. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. Petersson, Gaussian 09, Revision B.01.
Gaussian, Inc., Wallingford, CT, 2009.
[45] R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995)
1449.
[46] J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027.
[47] R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc.
121 (1999) 1922.
[48] T.A. Keith, TK Gristmill Software, Overland Park KS,
USA, 2013.
[49] R.F. Bader, Chem. Rev. 91 (1991) 893.
[50] I.L. Li, S. Ruan, Z. Li, J. Zhai, Z. Tang, Appl. Phys.
Lett. 87 (2005) 071902.
[51] J. He, W. Lv, Y. Chen, K. Wen, C. Xu, W. Zhang, Y.
Li, W. Qin, W. He, ACS Nano 11 (2017) 8144.
[52] R. Poteau, G. Trinquier, J. Am. Chem. Soc. 127 (2005)
13875.
[53] Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008)
215.
[54] I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 122
(2000) 11154.
[55] E. Espinosa, M. Souhassou, H. Lachekar, C. Lecomte,
Acta Crystallogr. Sect. B: Struct. Sci. 55 (1999) 563.
Volume 5, Issue 1
Spring and Summer
2021
Pages 120-131
  • Receive Date: 06 January 2021
  • Revise Date: 01 February 2021
  • Accept Date: 01 February 2021