Theoretical Investigation of 4-Methyl-4H-1,2,4-triazole-3-thiol and Its Mononuclear and Dinuclear Palladium(II) Complexes; Molecular Structure, NBO Analysis, FT-IR and UV-Vis Spectroscopy

Document Type : Research Paper

Authors

1 School of Chemistry, Damghan University, P.O. Box 36715-364 Damghan, Iran

2 Department of Chemistry, Islamic Azad University, Qaemshahr, Iran

3 Department of Chemistry, Farhangian University, Tehran, Iran

Abstract

In this research, the characterization of complexes [Pd(aemptrz)Cl2] (1), [Pd2(μ-mptrz)2(mptrz)2(en)].CH3OH (2) [Pd2(μ-mptrz)4] (3) and [Pd2(μ-mptrz)2(mptrz)2(en)] (4) (where aemptrz is 1‐(1‐(λ2‐azanyl)ethyl)‐4‐methyl‐5‐(λ1‐sulfanyl)‐4H‐1λ4,2,4‐triazole, en is ethylene diamine and Hmptrz is 4-methyl-4H-1,2,4-triazole-3-thiol) were carried out by Density Functional Theory (DFT) calculations. Structural, electronics and molecular properties (such as bond distances, bond angles, energies of highest occupied molecular orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), the energy gap (ΔE), chemical hardness η, the dipole moment μ and Natural bond orbital (NBO) analysis of compounds) have been investigated using B3LYP/TZVP level of theory. Moreover, electronic structures of all complexes via NBO calculation show that Pd-N and Pd-S bonds are made of delocalization of occupancies from lone pair (LP) orbital of N, S atoms to the palladium atom. The FT-IR spectroscopy analysis and electronic spectra were calculated using B3LYP/TZVP basis set and compared with the experimental values. Furthermore calculation of vibrational spectra are also allocated based on the potential energy distribution (PED) using the VEDA 4 program. The electronic spectra were calculated using DFT and time dependent density functional theory (TD-DFT) methods.

Graphical Abstract

Theoretical Investigation of 4-Methyl-4H-1,2,4-triazole-3-thiol and Its Mononuclear and Dinuclear Palladium(II) Complexes; Molecular Structure, NBO Analysis, FT-IR and UV-Vis Spectroscopy

Keywords


[1] R.D. Willett, G. Pon, C. Nagy, Inorg. Chem. 40
(2001) 4342.
[2] A. Kamal, M.A. Syed, S.M. Mohammed, Expert.
Opin. Ther Pat. 25 (2015) 335.
[3] a) W. Li, Q. Wu, Y. Ye, M. Luo, L. Hu, Y. Gu, F.
Niu, J. Hu, Spectrochim. Acta A60 (2004) 2343. b) B.
Mernari, H. Elattari, M. Triasnel, F. Bentiss, M.
Langrenee, Corros. Sci. 40 (1998) 391.
[4] P. Gourdon, J.H. Andersen, K.L. Hein, M. Bublitz,
B.P. Bendersen, X. Liu, L. Yatime, M. Nyblom, T.T.
Nielsen, C. Olsen, J.V. Møller, P. Nissem, J.P. Morth,
Growth Des. 11 (2011) 2098.
[5] P.C. Unangst, G.P. Shurum, D.T. Connor, R.D. Dyer,
D.J. Schrier, J. Med. Chem. 35 (1992) 3691.[6] V. Thottempudi, F. Forohar, D.A. Parrish, J.M.
Shreeve, Angew. Chem., Int. Ed. Engl. 51 (2012)
9881.
[7] J.K. Shneine, Y.H. Alaraji, IJSR.NET. 5 (2016) 1411.
[8] J. Burschca, A. Dualeh, F. Kessler, E. Baranaoff, N.
Crevey-Ha, C. Yi, M.K. Nazeeruddin, M. Grȁtzel,
Am. Chem. Soc. 133 (2011) 18042.
[9] Y. Hau, S. Chang, D. Huang, X. Zhou, X. Zhu, J.
Zhao, T. Chen, W.Y. Wong, W.K. Wong, Chem.
Mater. 25 (2013) 2146.
[10] D.-Y. Huang, H. Hong-Mei, P.-F. Yao, X.-H. Qin, F.-
P. Huang, Q. Yu, H.-D. Bian, Polyhedron 97 (2015)
260.
[11] M.H. Klingele, S. Brooker, Coord. Chem. Rev. 241
(2003) 119.
[12] S. Ozturk, M. Akkurt, A. Casiz, M. Koparir, M.
Sekerci, F.W. Heinemann. Acta Cryst. E60 (2004)
O642.
[13] D.C. Pinto, C.M. Santos, A.M. Silva, Recent Res.
Dev. Heter. Chem. 37 (2007) 397.
[14] A.V. Dolzhenko, G. Pastorian, W.K. Chiu,
Tetrahedron Lett. 50 (2009) 2124.
[15] S.C. Holam, B.F. Straub, New J. Org. Syn. 43 (2011)
319.
[16] R.M. Balabin, J. Chem. Phys. 131 (2009)1.
[17] I. Bertini, H.B. Gray, E.I. Steifel, J.S. Valentine,
Biological Inorganic Chemistry Structure and
Reactivity, University Science Books, USA, 2006
[18] F.A. Cotton, G. Wilkinson, C.A. Murillo, M.
Bochmann, Advanced Inorganic Chemistry, John
Wiley & Sons, New York, 1999
[19] M. Murahashi, H. Kurosawa. Coord. Chem. Rev. 231
(2002) 207.
[20] V. Amani, A.S. Delbari, A. Akbari, M.R. Poor
Heravi, M. Amin, Inorg. Chem. Res. 2 (2019) 65.
[21] E. Budzisz, M. Miernicka, I.-P .Lorenz, P. Mayer, U.
Krajewska, M. Rozalki, Polyhedron 28 (2009) 637.
[22] S. Nadeem, M. Bolte, S. Ahmad, T. Fazeelat, S.A.
Tirmizi, M.K. Rauf, S.A. Sattar, S. Siddiq, A.
Hameed, S.Z. Haider, Inorg. Chim. Acta 363 (2010)
3261.
[23] X.L. Hou, Z.M. Ge, T.M. Wang, W. Guo, J.R. Cui,
T.M. Cheng, C.S. Lai, R.T. Li, Bioorg. Med. Chem.
Lett. 16 (2006) 4214.
[24] J.G. Matecki, A. Maroń, Transit. Met. Chem. 36
(2011) 297.
[25] A.C. Moro, A.C. Urbaczek, E.T. De Almeida, F.R.
Pavan, C.Q.F. Leite, A.V.G. Netto, A.E. Mauro, J.
Coord. Chem. 65 (2012) 1434.
[26] A. Maroń, J.E. Nycz, B. Machura, J.G. Małecki,
Chem. Select 4 (2016) 798.
[27] J.G. Małecki, P. Zwolin´ Ski, Polyhedron 39 (2012)
85.
[28] S. Seyfi, R. Alizadeh, M.D. Ganji, V. Amani,
Polyhedron 134 (2017) 302.
[29] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2
(2012) 73.
[30] H. Haberland, Ed. W., John Whiey & Sons, 1999,
p. 181.
[31] F. Weigend, R. Ahlrichs, Chem. Phys. 7 (2005) 3297.
[32] A.D. Becke. J. Chem. Phys. 98 (1993) 5648.
[33] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988)
785.
[34] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H.
Preuss, Theor. Chem. Acc. 77 (1990) 123.
[35] U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Mol.
Phys. 78 (1993) 1211.
[36] E.D. Glendening, A.E. Reed, J.E. Carpenter, F.
Weinhold, J. Am. Chem. Soc. 120 (1998) 12051.
[37] a) Y. Zhao, D.G. Truhlar, J. Chem. Phys. 125 (2006)
1. b) Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120
(2008) 215.
[38] A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin
Trans. 2 (1993) 799.
[39] M.E. Casida, J. Theor. Comput. Chem. 4 (1996) 391.
[40] M.H. Jamróz, Vibrational Energy Distribution
Analysis, VEDA 4, 2004.
[41] M.H. Jamróz, Spectrochim. Acta Mol. Biomol.
Spectrosc. 114 (10) (2013) 220.
[42] V. Krishnakumar, R.J. Xavier, Spectrochimica Acta
Part A 60 (2004) 709.
[43] H.-Y. Wang, P.-S. Zhao, R.-Q. Li, S.-M. Zhou,
Molecules 14 (2009) 608.
[44] J. Luo, J.R. Khusnutdinova, N.P. Rath, L.M. Mirica,
Chem. Commun. 48 (2012) 1532.
[45] B.-H. Xia, C.-M., Z.-Y. Zhou, Chem. Eur. J. 9 (2003)
3055.
[46] J.E. Bercaw, A.C. Durrell, H.B. Gray, J.C. Green, N.Hazari, J.A. Labinger, J.R. Winkler.Inorg, Chem. 49
(2010) 1801.
[47] a) K.R. Mann, J.G. Gordon, H.B. Gray, J. Am. Chem.
Soc. 97 (1975) 3553.(b) R.G. Parr, R.G. Pearson, J.
Am. Chem. Soc. 105 (1983) 7512.
[48] G. Heimel, L. Romanerb, E. Zojerc, J.-L. Brédasd,
Organic Optoelectronics and Photonics III, Proc. of
SPIE, 6999 (2008) 699919. b) R.D. Vargas-Sánchez,
A.M. Mendoza-Wilson, R.R. Balandrán-Quintana,
G.R. Torrescano-Urrutia, A. Sánchez-Escalante,
Comput. Theor. Chem. 1058 (2015) 21.
[49] S. Baishya, R.C. Deka, Comput. Theor. Chem. 1002
(2012) 1.
[50] J. Sam, J. Abraham, Ind. Eng. Chem. Res. 51 (2012)
16633.
[51] H.O. Kalinowski, S. Berger, S. Braun, Carbon-13
NMR Spectroscopy, John Wiley and Sons,
Chichester, 1988.
[52] I. Fleming, Frontier Orbitals and Organic Chemical
Reactions, Wiley, London, 1976.
[53] M. Karelson, V.S. Lobanov, R. Katritzky, Chem. Rev.
96 (1996) 1027.
[54] K.F. Khaled, K. Babic´-samaradzija, N. Hackerman,
Appl. Surf. Sci. 240 (2005) 327.
[55] D.G. Truhlar, J. Chem. Phys. 82 (1985) 2418.
[56] R.P. Gangadharan, S.S. Krishnan, Acta Physica
Polonica A 125 (2014) 18.
[57] N. Günaya, Ö. Tamerb, D. Kuzalicc, D. Avci, Y.
Atalayb, Acta Physica Polonica A 127 (2015) 701.
[58] K. Bahgat, S. Fraihat, Spectrochim. Acta Mol.
Biomol. Spectrosc. 135 (2015) 1145.
[59] D.M. Samiei Paqhaleh, A.A. Aminjanov, V. Amani,
A. Morsali, J. Inorg. Organomet. Polym. Mater. 24
(2014) 340.
[60] Y.L. Wang, N. Zhang, Q.Y. Liu, Z.M. Shan, R. Cao,
M.S. Wang, J.J. Luo, E.L. Yang, Cryst. Growth Des.
11 (2011) 130.
[61] Y.L. Jiang, Y.L. Wang, J.X. Lin, Q.Y. Liu, Z.H. Lu,
N. Zhang, J.J. Wei, L.Q. Li, Cryst. Eng. Comm. 13
(2011) 1697.
[62] J.P. Jesson, H.W. Thompson, Spectrochim. Acta 13
(1958) 217.
[63] J. Jolley, W.I. Cross, R.G. Pritchard, Ch.A.
McAuliffe, K.B. Nolan, Inorg. Chim. Acta 315 (2001)
36.
[64] J. Sam, J. Abraham, Eng. Chem. Res. 51 (2012)
16633.
[65] D.J. Charboneau, N.A. Piro, W. Scott Kassel, T.J.
Dudley, J. Paul. Polyhedron 91 (2015) 18.
[66] Ch. Gabbiani, A. Casini, L. Messori, A. Guerri, M.A.
Cinellu, M. Corsini, C. Rosani, P. Zanello, M. Arca,
Inorg. Chem. 47 (2008) 2368.
[67] S. Sangilipandi, R. Nagarajaprakash, D. Sutradhar, W.
Kaminsky, A.K. Chandra, K.M. Rao, Inorg. Chim.
Acta 437 (2015) 177.
[68] G. Zhang, Ch.B. Musgrave, J. Phys. Chem. A 111
(2007) 1554.
[69] R.N. Singh, R.K. Amit Kumar, T. Spectrochim. Acta,
Part A 112 (2013) 182.
[70] M.M. El-Nahass, M.A. Kamel, A.F. El-deeb, A.A.
Atta, S.Y. Huthaily, Spectrochim. Acta, Part A 79
(2011) 443.
[71] R.C. Evans, P. Douglas, C.J. Winscom, Coord. Chem.
Rev. 250 (2006) 2093.
[72] S.-W. Lai, C.-M. Che, Top. Curr. Chem. 241 (2004)
27.
[73] J.-C. Shi, T.-B. Wen, Y. Zheng, S.-J. Zhong, D.-X.
Wu, Q.-T. Liu, B.S. Kang, B.-M. Wu, T.C.W. Mak,
Polyhedron 16 (1997) 369.
[74] P.T. Chou, Y. Chi, Chem. Eur. J. 13 (2007) 380.