Modification of Magnetic TiO2 Nanocomposite with CoIII, ZnII and NiII Porphyrins for Photodegradation of Methylene Blue under the Blue Vis-LED Light Irradiation

Document Type : Research Paper

Authors

Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P. O. Box: 47416-95447, Babolsar, Iran

Abstract

The magnetic nanocomposites [magnetite@silica@titania@metallo tetra hydroxyl phenyl porphyrin, Fe3O4@SiO2@TiO2@MTHPP] (MSiTMP; M = CoIII, ZnII, NiII) and [Fe3O4@SiO2@TiO2] (MSiT) have been synthesized and characterized. These nanocomposites were used to degrade of methylene blue (MB) under the blue light-emitting diode (LED) lamp irradiation. The degradation of MB was monitored by UV-Vis spectrometry. Upon a 180 min irradiation period maximum degradation of MB in presence of MSiTNiIIP, MSiTZnIIP, MSiTCoIIIP and MSiT photocatalysts were 90, 80, 63, and 48 %g−1, respectively. After three 180 min runs, the photocatalysts still exhibited good activity. From Ultra-Violent-Diffuse reflectance spectroscopy spectra, the band gap energies of the photocatalysts were found to be 2.6, 2.5, 2.4 and 2.2 eV for MSiT, MSiTCoIIIP, MSiTZnIIP and MSiTNiIIP, respectively. The results consist with the observed relative photocatalytic activity of the photocatalysts which is as follows: MSiTNiIIP> MSiTZnIIP >MSiTCoIIIP >MSiT. The higher photocatalytic properties of MSiTNiIIP photocatalyst may be due to the fact that NiII complex is more susceptible to receive electron and reach to steady state than that of ZnII and CoIII. The degradation of MB using these nanocomposites were found to follow the pseudo first order kinetics.

Graphical Abstract

Modification of Magnetic TiO2 Nanocomposite with CoIII, ZnII and NiII Porphyrins for Photodegradation of Methylene Blue under the Blue Vis-LED Light Irradiation

Keywords


[1] H. Esmaili, A. Kotobi, S. Sheibani, F. Rashchi, Int. J.
Min. Met. Mat. 25 (2018) 244.
[2] J. Singh, P. Yadav, A.K. Pal, V. Mishra, in Sensors in Water Pollutants Monitoring: Role of Material,
Springer, 2020, p. 5.
[3] M.A. Raja, V. Preethi, Int. J. Hydrogen Energ. 45
(2020) 7616.
[4] P.S. Basavarajappa, S.B. Patil, N. Ganganagappa,
K.R. Reddy, A.V. Raghu, C.V. Reddy, Int. J.
Hydrogen Energ. 45 (2020) 7764.
[5] D. Ma, J. Li, A. Liu, C. Chen, Materials 13 (2020)
1734.
[6] A. Zielińska-Jurek, Bielan, Z. Dudziak, S. Wolak, I.
Sobczak, Z. Klimczuk, T. Hupka, J. Catal. 7 (2017) 1.
[7] A. Mishra, A. Mehta, S. Basu, J. Environ. Chem.
Engin. 6 (2018) 6088.
[8] S. Kanan, M.A. Moyet, R.B. Arthur, H.H. Patterson,
Catal. Rev. 62 (2020) 1.
[9] F. Chang, H. Chen, X. Zhang, B. Lei, X. Hu, Sep.
Purif. Technol. 238 (2020) 116442.
[10] T. Xu, P. Wang, D. Wang, K. Zhao, M. Wei, X. Liu,
H. Liu, J. Cao, Y. Chen, H. Fan, J. Alloy Compd. 1
(2020) 155689.
[11] C. Borgohain, J. Borah, Matt. Res. Express 7 (2020)
016111.
[12] C. Liu, Y. Li, Q. Duan, Appl. Surf. Sci. 503 (2020)
144111.
[13] E. Alzahrani, Am. J. Analyt. Chem. 8 (2017) 95.
[14] A. Pourzad, H.R. Sobhi, M. Behbahani, A. Esrafili,
R.R. Kalantary, M. Kermani, J. Mol. Liq. 299 (2020)
112167.
[15] R. Kaveh, M. Mokhtarifar, M. Bagherzadeh, A.
Lucotti, M.V. Diamanti, M. Pedeferri, Molecules 25
(2020) 2996.
[16] L.-Y. Huang, J.-F. Huang, Y. Lei, S. Qin, J.-M. Liu,
Catalysts 10 (2020) 656.
[17] Z. Li, C. Wang, Z. Su, W. Zhang, N. Wang, G. Mele,
J. Li, Matter. Chem. Phys. 1 (2020) 123228.
[18] S. Gonuguntla, A. Tiwari, S. Madanaboina, G.
Lingamallu, U. Pal, Int. J. Hydrogen Energ. 45 (2020)
7508.
[19] M. Gaeta, G. Sanfilippo, A. Fraix, G. Sortino, M.
Barcellona, G. Oliveri Conti, M.E. Fragalà, M.
Ferrante, R. Purrello, A. D’Urso, Int. J. Mol. Sci. 21
(2020) 3775.
[20] J. Niu, B. Yao, Y. Chen, C. Peng, X. Yu, J. Zhang , G.
Bai, Appl. Surf. Sci. 271 (2013) 39.
[21] H. Wang, D. Zhou, Z. Wu, J. Wan, X. Zheng, L. Yu,
D.L. Phillips, Mater. Res. Bull. 57 (2014) 311.
[22] M. Rabbani, M. Heidari-Golafzani, R. Rahimi,
Matter. Chem. Phys. 179 (2016) 35.
[23] X. Zhao, X. Liu, M. Yu, C. Wang, J. Li, Dyes. Pig.
136 (2017) 648.
[24] X.-F. Lü, H. Qian, G. Mele, A. De Riccardis, R. Zhao,
J. Chen, H. Wu , N.-J. Hu, Catl. Today 281 (2017) 45.
[25] D. Larowska, J.M. O'Brien, M.O. Senge, G.
Burdzinski, B. Marciniak, A. LewandowskaAndralojc, J. Phys. Chem. C 1 (2020) 1.
[26] H.P. Mota, R.F. Quadrado, B.A. Iglesias, A.R.
Fajardo, Appl. Catal. B. Env. 1 (2020) 119208.
[27] C. Huang, Y. Lv, Q. Zhou, S. Kang, X. Li, J. Mu,
Ceram. Int. 40 (2014) 7093.
[28] J.P. Ghosh, C.H. Langford, G. Achari, J. Phys. Chem.
A 112 (2008) 10310.
[29] C. Casado, R. Timmers, A. Sergejevs, C. Clarke, D.
Allsopp, C. Bowen, R. van Grieken, J. Marugán,
Chem. Eng. J. 327 (2017) 1043.
[30] N. Doss, G. Carré, V. Keller, P. André, N. Keller,
Water, Air, Soil Pollut. 229 (2018) 1.
[31] L. Qiu, A. Dong, S. Zhang, S. Wang, Z. Chang, Y.
Lu, Z. Sui, L. Feng, Q. Chen, J. Mater. Sci. 1 (2020)
1.
[32] T.A. Gad-Allah, S. Kato, S. Satokawa, T. Kojima,
Desalination 244 (2009) 1.
[33] A. Jesus, J. Jesus, R. Lima, K. Moura, J. Almeida, J.
Duque, C. Meneses, Ceram. Int. 46 (2020) 11149.
[34] V.D. Rumyantseva, A.S. Gorshkova, A.F. Mironov,
Macroheterocycles 6 (2013) 59.
[35] A.D. Adler, F.R. Longo, J.D. Finarelli, J.
Goldmacher, J. Assour, L. Korsakoff, J. Org. Chem.
32 (1967) 476.
[36] A. Monshi, M.R. Foroughi, M.R. Monshi, WJNSE 2
(2012) 154.
[37] D.J. Lim, N.A. Marks, M.R. Rowles, Carbon 162
(2020) 475.
[38] D. Bu, N. Li, Y. Zhou, H. Feng, F. Yu, C. Cheng, M.
Li, L. Xiao, Y. Ao, N. J. Chem. 2012 (2020) 1.
[39] P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett.
9 (2018) 6814.
[40] M. Wei, J. Wan, Z. Hu, Z. Peng, B. Wang, J. Mater.
Sci.: Mater. Elec. 27 (2016) 4026.
[41] O. Bajjou, A. Bakour, M. Khenfouch, M. Baitoul, B.
Mothudi, M. Maaza, E. Faulques, J. Mater. Sci.:
Mater. Elec. 29 (2018) 8594.
[42] W.-J. Sun, J. Li, G.-P. Yao, F.-X. Zhang, J.-L. Wang,
Appl. Surf. Sci. 258 (2011) 940.
[43] G. Mele, R. Del Sole, G. Vasapollo, E. García-López,
L. Palmisano, L. Jun, R. Słota, G. Dyrda, Res. Chem.
Intermed. 33 (2007) 433.
[44] D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang,
H. Song, Phys. Status Solidi A 214 (2017) 1.
[45] F. Bavarsiha, M. Rajabi, M. Montazeri-Pour, J. Mater.
Sci.: Mater. Elec. 29 (2018) 1877.
[46] H. Ghafuri, M. Dehghani, A. Rashidizadeh, M.
Rabbani, Optik 179 (2019) 646.
[47] C.-F. Chang, C.-Y. Man, Colloids Surf., A: Phys.
Chem. Eng. Asp. 441 (2014) 255.
[48] X.-F. Lü, W.-J. Sun, J. Li, W.-X. Xu, F.-X. Zhang,
Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 111
(2013) 161.
[49] V. Augugliaro, M. Bellardita, V. Loddo, G.
Palmisano, L. Palmisano, S. Yurdakal, J. Photo.
Chem. Photo. Bio. C 13 (2012) 224.
[50] Q. Mu, Y. Sun, A. Guo, X. Yu, X. Xu, A. Cai, X.
Wang, Matt. Res. Express 6 (2019) 1.
[51] C.Y. Lee, J.T. Hupp, Langmuir 26 (2009) 3760.