Bimetallic MOFs as Catalysts for Efficient and Totally Selective Oxidation of Benzylic Alcohols at Ambient Conditions

Document Type : Research Paper

Authors

Department of Chemistry, Faculty of Science, University of Birjand, Birjand, 97179-414 Iran

Abstract

The catalytic activity of bimetallic MOFs known as STA-12(M1, M2)(M1,2= Mn, Fe, Co) was investigated in the oxidation of benzylic alcohols to corresponding aldehydes at ambient conditions. The oxidation reaction with Na2S2O4/TBHP (tert-Butyl hydroperoxide) mixture shows total selectivity and excellent efficiency under desired reaction times. The heterogeneous catalyst displays high reusability and stability for the ten consecutive reactions without decreasing in yield and selectivity. To identify radical species responsible for the oxidation process, selective radical scavenging experiments were performed and a purposed oxidation mechanism was discussed.

Graphical Abstract

Bimetallic MOFs as Catalysts for Efficient and Totally Selective Oxidation of Benzylic Alcohols at Ambient Conditions

Keywords


[1] G. Tojo, M.I. Fernández, Oxidation of Alcohols to
Aldehydes and Ketones, Springer, New York, 2006.
[2] H. Sterckx, B. Morel, B.U.W. Maes, Angew. Chem.
Int. Ed. 58 (2019) 7946.
[3] N. Jiao, S.S. Stahl, Green Oxidation in Organic
Synthesis, John Wiley & Sons, Hoboken, NJ, 2019.
[4] D. Yang, B.C. Gates, Catalysis by Metal Organic
Frameworks: Perspective and Suggestions for Future
Research, ACS Catal. 9 (2019) 1779.
[5] O.M. Yaghi, M.J. Kalmutzki, C.S. Diercks,
Introduction to Reticular Chemistry, Wiley-VCH,
Germany, 2019.
[6] M.C. Wasson, C.T. Buru, Z. Chen, T. Islamoglu, O.K.
Farha, Appl. Catal. A Gen. 586 (2019) 117214.
[7] M.J. Beier, W. Kleist, M.T. Wharmby, R. Kissner, B.
Kimmerle, P.A. Wright, J.D. Grunwaldt, A. Baiker,
Chem. Eur. J. 18 (2012) 887.
[8] A. Farrokhi, M. Jafarpour, R. Najafzade, Catal. Lett.
147 (2017) 1714.
[9] A. Farrokhi, M. Jafarpour, M. Alipour, J. Organomet.
Chem. 903 (2019) 120995.
[10] J. Li, P.M. Bhatt, J. Li, M. Eddaoudi, Y. Liu, Adv.
Mater. 32 (2020) 2002563.
[11] A. Farrokhi, F. Feizpour, M. Asaadzadeh, Appl.
Organomet. Chem. 33 (2019) e4928.
[12] G.M. Pearce, Ph. D. Thesis, University of St
Andrews, UK, 2009.
[13] B.R. Goldsmith, B. Peters, J.K. Johnson, B.C. Gates,
S.L. Scott, ACS Catal. 7 (2017) 7543.
[14] R. Bai, Q. Sun, Y. Song, N. Wang, T. Zhang, F.
Wang, Y. Zou, Z. Feng, S. Miao, J. Yu, J. Mater.
Chem. A 6 (2018) 8757.
[15] C. Xu, R. Fang, R. Luque, L. Chen, Y. Li, Coord.
Chem. Rev. 388 (2019) 268.
[16] C.-B. Bai, N.-X. Wang, X.-W. Lan, Y.-J. Wang, Y.
Xing, J.-L. Wen, X.-W. Gao, W. Zhang, Sci. Rep. 6
(2016) 20163.
[17] G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci.
Technol. 38 (2004) 3705.
[18] C. Liang, H.-W. Su, Ind. Eng. Chem. Res. 48 (2009)
5558.
[19] B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Crit. Rev.
Environ. Sci. Technol. 45 (2015) 1756.
[20] P. Caregnato, P.M. David Gara, G.N. Bosio, M.C.
Gonzalez, N. Russo, M. C. Michelini, D.O. Martire, J.
Phys. Chem. A 112 (2008) 1188.
[21] C. Xu, J. Lin, D. Yan, Z. Guo, D.J. Austin, H. Zhan,
A. Kent, Y. Yue, ACS Appl. Nano Mater. 3 (2020)
6416.
[22] S. Kim, J. Lee, S. Jeoung, H.R. Moon, M. Kim, Dalt.
Trans. 49 (2020) 8060.
[23] L. Liu, X. Zhou, L. Liu, S. Jiang, Y. Li, L. Guo, S.
Yan, X. Tai, Catalysts 9 (2019) 538.
[24] K.I. Otake, Y. Cui, C.T. Buru, Z. Li, J.T. Hupp, O.K.
Farha, J. Am. Chem. Soc. 140 (2018) 8652.
[25] L. Liu, X. Tai, X. Zhou, J. Hou, Z. Zhang, J. Alloys
Compd. 790 (2019) 326.
[26] X. Wang, X. Zhang, P. Li, K.I. Otake, Y. Cui, J. Lyu,
M.D. Krzyaniak, Y. Zhang, Z. Li, J. Liu, C.T. Buru,
T. Islamoglu, M.R. Wasielewski, Z. Li, O.K. Farha, J.
Am. Chem. Soc. 141 (2020) 8306.