Investigation of Catalytic Activity and Kinetics of a Pd/Biphenyl-based Phosphine System in the Ullmann Cross-coupling of Para-substituted Aryl Bromides

Document Type : Research Paper

Authors

Faculty of Chemistry, Razi University, Kermanshah, Iran

Abstract

Catalytic activity of a Pd/biphenyl based- phosphine system in the Ullmann cross-coupling reaction of various para-substituted aryl bromides were investigated. The results showed that the bulky electron-rich phosphine efficiently modify the electronic and steric properties of palladium center and promote the cross-coupling reaction. Mechanistic study using the Hammett correlation revels that electron-withdrawing substituents decrease the electron density at the palladium center and decrease the rate of oxidative-addition step such that this step will become the rate determining step (rds). On the other hand, electron-donating groups increase the rate of oxidative-addition step such that the reductive-elimination step will become the rds.

Keywords


[1] P.E. Fanta, Chem. Rev. 64 (1964) 613.
[2] W.M. Seganish, M.E. Mowery, S. Riggleman, P.
DeShong, Tetrahedron 61 (2005) 2117.
[3] J. Hassan, C. Hathroubi, C. Gozzi, M. Lemaire,
Tetrahedron Lett. 41 (2000) 8791.
[4] M. Kuroboshi, Y. Waki, H. Tanaka, J. Org. Chem.
68 (2003) 3938.
[5] M. Catellani, E. Motti, S. Baratta, Org. Lett. 3
(2001) 3611. 
[6] N. Hazari, P.R. Melvin, M.M. Beromi, Nat. Rev.
Chem. 1 (2017) 17.
[7] J. Jiang, L. Du, Y. Ding. Mini-Rev. Org. Chem. 17
(2020) 26.
[8] S. Rana, G.B. Bidita V.S.B. Jonnalagada, RSC Adv.
9 (2019) 13332.
[9] A.M. Trzeciak, A.W. Augustyniak, Coord. Chem.
Rev. 384 (2019) 1.
[10] J. Hassan, C. Hathroubi, C. Gozzi, M. Lemaire,
Tetrahedron 57 (2001) 7845.
[11] I. Cepanec, M. Litvic, J. Udikovic, I. Pogorelic, M.
Lovric, Tetrahedron 63 (2007) 5614.
[12] M. Joshaghani, E. Faramarzi, E. Rafiee, M.
Daryanavard, J. Xiao, C. Baillie, J. Mol. Catal. A:
Chem. 273 (2007) 310e315.
[13] M. Joshaghani, M. Daryanavard, E. Rafiee, J. Xiao,
C. Baillie, Tetrahedron Lett. 48 (2007) 2025e2027.
[14] Strohmeier, W.; Muller, F. J. Chem. Ber. 100 (1967)
2812.
[15] Tolman, C.A.J. Am. Chem. Soc. 92 (1970) 2593.
[16] Tolman, C.A. Chem. Rev. 77 (1977) 313.
[17] A.S. Kende, L.S. Libeskind, D.M. Braitsch,
Tetrahedron Lett. 16 (1975) 3375.
[18] R. Nakajima, Y. Shintani, T. Hara, Bull. Chem. Soc.
Jpn. 53 (1980) 1767.
[19] S. Mukhopadhyay, G. Rothenberg, H. Wiener, Y.
Sasson, Tetrahedron 55 (1999) 14763.
[20] D.D. Hennings, T. Iwama, V.H. Rawal, Org. Lett.
1 (1999) 1205.
[21] S. Nadri, E. Azadi, A. Ataei, M. Joshaghani, E.
Rafiee, J. Organomet. Chem. 696 (2011) 2966.
[22] E.R. Strieter, D.G. Blackmond, S.L. Buchwald, J.
Am. Chem. Soc. 125 (2003) 13978.
[23] P. Weber, Th. Scherpf, I. Rodstein, D. Lichte, L.T.
Scharf, L.J. Gooßen, V.H. Gessner, Angew. Chem.
Int. Ed. 58 (2019) 3203. 
[24] K.L. Billingsley, K.W. Anderson, S.L. Buchwald,
Angew. Chem. Ind. Ed. 45 (2006) 3484.
[25] J.E. Milne, S.L. Buchwald, J. Am. Chem. Soc. 126
(2004) 13028.
[26] J.P. Wolfe, H. Tomori, J.P. Sadighi, J.J. Yin, S.L.
Buchwald, J. Org. Chem. 65 (2002) 1158.
[27] C.H. Burgos, T.E. Barder, X.H. Huang, S.L.
Buchwald, Angew. Chem. Ind. Ed. 45 (2006) 4321.
[28] W.A. Moradi, S.L. Buchwald, J. Am. Chem. Soc.
123 (2002) 7996.
[29] M. Joshaghani, M. Daryanavard, E. Rafiee, J. Xiao,
C. Baillie, Tetrahedron Lett. 48 (2007) 2025.
[30] C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91
(1991) 165.
[31] K.S. Varaksin, H. Szatylowicz, T.M. Krygowski, J.
Mol. Struct. 1137 (2017) 581.