Csp3-Cl bond Activation Promoted by a Methylplatinum(II) Complex: Synthesis, Structural Characterization, and Density Functional Approach to Oxidative Addition Reaction with Dichloromethane

Document Type : Research Paper


1 Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz 71993-37635, Iran

2 Department of Chemistry, Shiraz University, Shiraz, Iran


Dimethylplatinum(II) complex [PtMe2(pbt)], 1, with pbt = 2(2pyridyl)benzothiazole ligand, can react with dichloromethane solvent to give the corresponding organoplatinum(IV) complex [Pt(Cl)(CH2Cl)Me2(pbt)]. The reaction gives exclusively trans addition product in which Cl and CH2Cl are located trans to each other. The suggested mechanism for this oxidative addition reaction was computationally investigated and related species during this process are proposed. DFT calculations show that the reaction proceeds through a transition state with the energy barrier of 97.5 kJ/mol. Attempts to grow crystals of the Pt(II) complex 1 in CH2Cl2/nhexane mixture of solvents forms the dichloro Pt(IV) complex [PtCl2Me2(bpt)], which its structure is determined by X-ray crystallography.


[1] R.H. Grubbs, Organometallic Chemistry in Industry:
A Practical Approach. John Wiley & Sons, 2020.
[2] M. Mingos, R. Crabtree, Comprehensive
Organometallic Chemistry III. Elsevier Science, 2007.
[3] R.H. Crabtree, The Organometallic Chemistry of the
Transition Metals. John Wiley & Sons, 2009.
[4] R. Kancherla, K. Muralirajan, B. Maity, C. Zhu, P.E.
Krach, L. Cavallo, M. Rueping, Angew. Chem. Int.
Ed. 131 (2019) 3450.
[5] P. Hamidizadeh, S.M. Nabavizadeh, S.J. Hoseini,
Dalton Trans. 48 (2019) 3422.
[6] N.H. Fatemeh, Z. Farasat, S.M. Nabavizadeh, G. Wu,
M.M. Abu-Omar, J. Organomet. Chem. 880 (2019)
[7] M.D. Aseman, M. Rashidi, S.M. Nabavizadeh, R.J.
Puddephatt, Organometallics 32 (2013) 2593.
[8] S.M. Nabavizadeh, S.J. Hoseini, B.Z. Momeni, N.
Shahabadi, M. Rashidi, A.H. Pakiari, K. Eskandari,
Dalton Trans. (2008) 2414.
[9] S.J. Hoseini, H. Nasrabadi, S.M. Nabavizadeh, M.
Rashidi, R.J. Puddephatt, Organometallics 31 (2012)
[10] F. Niroomand Hosseini, S.M. Nabavizadeh, M.M.
Abu-Omar, Inorg. Chem. 56 (2017) 14706.
[11] R.B. Aghakhanpour, S.M. Nabavizadeh, L.
Mohammadi, S.A. Jahromi, M. Rashidi, J.
Organomet. Chem. 781 (2015) 47.
[12] P.M. Scheetz, N.F. Blank, S.K. Gibbons, D.S. Glueck,
Inorg. Chim. Acta 483 (2018) 111.
[13] A. Abo-Amer, M.S. McCready, F. Zhang, R.J.
Puddephatt, Can. J. Chem. 90 (2012) 46.
[14] F. Stöhr, D. Sturmayr, G. Kickelbick, U. Schubert,
Eur. J. Inorg. Chem. (2002) 2305.[15] S.M. Nabavizadeh, F. Raoof, F. Pakpour, L.S.
Sarvestani, F. Niknam, F.N. Hosseini, S.J. Hoseini,
Inorg. Chim. Acta 506 (2020) 119535.
[16] G. Sheldrick, SADABS, Empirical Absorption
Correction Program; University of Göttingen:
Germany, 1997 (2005).
[17] SHELXTL PC, Version 6.12, Bruker AXS Inc.,
Madison, WI, 2005.
[18] M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M.
Robb, J. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. Petersson, Gaussian 09, revision D. 01.
Gaussian, Inc., Wallingford CT, 2009.
[19] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comp.
Chem. 24 (2003) 669.
[20] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270.
[21] P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28
(1973) 213.
[22] L.M. Rendina, R.J. Puddephatt, Chem. Rev. 97 (1997)
[23] M. Crespo, M. Martinez, S.M. Nabavizadeh, M.
Rashidi, Coord. Chem. Rev. 279 (2014) 115.
[24] R.H.; Hill, R.J., Puddephatt, J. Am. Chem. Soc. 107
(1985) 1218.
[25] P.K. Monaghan, R.J. Puddephatt, J. Chem. Soc.
Dalton Trans. (1988) 595.
[26] S.M. Nabavizadeh, S. Habibzadeh, M. Rashidi, R. J.,
Puddephatt, Organometallics 29 (2010) 6359.