Preparation and Investigation of Spinel-structured FeCo2O4 Nanoparticles as an Efficient Catalyst for Oxidation of Sulfides

Document Type : Research Paper

Authors

1 Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran

2 Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160-014, India

3 Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, South Korea

Abstract

We report the preparation and characterization of spinel-structured FeCo2O4 nanoparticles for the efficient and selective oxidation of sulfides. The as-prepared FeCo2O4 nanoparticles were characterized by powder X-ray diffraction (PXRD), energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to TEM images, the size of the FeCo2O4 particles is identified to be 10– 20 nm. The obtained FeCo2O4 nanoparticles were used as an efficient catalyst for oxidation of sulfides. For all sulfide substrates, very good conversions (69-100%) and selectivities (89-99%) depending on the nature of the sulfide substrates were obtained. The reusability and recoverability of catalyst show that the catalytic system can be reused fourth times without significant loss of reactivity and stability.

Keywords


[1] M. Amini, M.M. Haghdoost, M. Bagherzadeh, Coord.
Chem. Rev. 25 (72013) 1093.
[2] D.H. Koo, M. Kim, S. Chang, Org. Lett. 7 (2005)
5015.
[3] K.C. Soni, S.C. Shekar, B. Singh, T. Gopi, J. Colloid
Interface Sci. 446 (2015) 226.
[4] M. Amini, H. Naslhajian, S.M.F. Farnia, M.
Hołyn´ska, Eur. J. Inorg. Chem. 2015 (2015) 3873.
[5] A. Askarinejad, M. Bagherzadeh, A. Morsali, J. Exp.
Nanosci. 6 (2011) 217.
[6] S.S. Negi, K. Sivaranjani, A.P. Singh, C.S. Gopinath,
Appl. Catal. A: Gen. 452 (2013) 132.
[7] M. Amini, H. Naslhajian, S.M.F. Farnia, New J.
Chem. 38 (2014) 1581.
[8] A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis,
N. Ghasemian, E. Jabbari, Nano-Structures & Nano-
Objects 14 (2018) 19.
[9] H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu,
Nano Today 11 (2016) 601.
[10] V. Polshettiwar, B. Baruwati, R.S. Varma, Acs Nano
3 (2009) 728.
[11] S. Yurdakal, B.S. Tek, O.u. Alag◌ِz, V. Augugliaro,
V. Loddo, G. Palmisano, L. Palmisano, ACS Sustain.
Chem. Eng. 1 (2013) 456.
[12] T. Kim, I.E. Wachs, J. Catal. 255 (2008) 197.
[13] D. Banerjee, R.V. Jagadeesh, K. Junge, M.M. Pohl, J.
Radnik, A. Brückner, M. Beller, Angew. Chem.
Internat. Ed. 53 (2014) 4359.
[14] L. Zhou, J. Xu, H. Miao, F. Wang, X. Li, Appl. Catal.
A: Gen. 292 (2005) 223.
[15] V. Kesavan, D. Dhar, Y. Koltypin, N. Perkas, O.
Palchik, A. Gedanken, S. Chandrasekaran, Pure Appl.
Chem. 73 (2001) 85.
[16] Z. Gu, X. Zhang, J. Alloys Compd. 766 (2018) 796.
[17] L. Merabet, K. Rida, N. Boukmouche, Ceram. Int. 44
(2018) 11265.
[18] T.H. Lim, S.B. Park, J.M. Kim, D.H. Kim, J. Mol.
Catal. A: Chem. 426 (2017) 68.
[19] G.-Y. Zhang, B. Guo, J. Chen, Sens. Actuators B:
Chem. 114 (2006) 402.
[20] J. Zhu, Q. Gao, Microporous Mesoporous Mater. 124
(2009) 144.
[21] H. Gao, Y. Li, H. Zhao, J. Xiang, Y. Cao,
Electrochim. Acta 262 (2018) 241.
[22] T.A.S. Ferreira J.C. Waerenborgh, M.H.R.M.
Mendonça, M.R. Nunes, F.M. Costa, Solid State Sci. 
5 (2003) 383.
[23] L. Lin, S. Tang, S. Zhao, X. Peng, N. Hu,
Electrochim. Acta 228 (2017) 175.
[24] H. Hu, B. Guan, B. Xia, X.W. Lou, J. Am. Chem.
Soc. 137 (2015) 5590.
[25] A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, J.
Mater. Chem. A 3 (2015) 16849.
[26] S.G. Mohamed, S.Y. Attia, H.H. Hassan, Microporous
Mesoporous Mater. 251 (2017) 26.
[27] G. Xu, Z. Zhang, X. Qi, X. Ren, S. Liu, Q. Chen, Z.
Huang, J. Zhong, Ceram. Int. 44 (2018) 120.