The Flight of the Monarch: [Cu(L)(CH3CN)(PPh3)]ClO4 (L = 2,5-Diphenyl-3,4-bis(2-pyridyl) Cyclopenta-2,4-dien-1-one)

Document Type : Research Paper

Authors

1 Department of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran

2 CCC-IPSB, École Polytechnique Fédérale de Lausanne, Le Cubotron, Dorigny, CH-1015 Lausanne, Switzerland

Abstract

The mononuclear complex [Cu(L)(CH3CN)(PPh3)]ClO4, (1), (L= 2,5-diphenyl-3,4-bis(2-pyridyl)cyclopenta-2,4-dien-1-one), has been synthesized and investigated by elemental analysis, IR, 1H NMR, UV-Vis spectroscopic methods and X-ray diffraction. The complex crystallizes in the non-centrosymmetric space group P212121 in accord with the asymmetric (atropisomer) Cu centre. Its coordination polyhedron has four vertices and is devoid of any symmetry. The [Cu(L)(CH3CN)(PPh3)]ClO4 is amongst the few MeL complexes crystallizing in a non-centrosymmetric space group. The bite-angle of the bidentate ligand L is 90.92(13)°, indicating some strain in the structure; this entails an enhanced instability of the complex with respect to strongly coordinating solvents. The crystal of 1 owes its cohesion to a multitude of weak C-H...O and C-H... interations. The electrochemistry of the complex shows three reversible ligand-centred reduction processes and an irreversible metal-centred one. This indicates that the coordination of the CuI(CH3CN)(PPh3) moiety to the L leads to the delocalization of electron density from L to the CuI(CH3CN)(PPh3) moiety.

Keywords


[1] R. Czerwieniec, J. Yu, H. Yersin, Inorg. Chem. 50
(2011) 8293.
[2] S. Kumar, G. Mani, D. Dutta, S. Mishra Inorg. Chem.
53 (2014) 700, and references therein.
[3] T. Bessho, E.C. Constable, M. Graetzel, R.A.
Hernandez, C.E. Housecroft, W. Kylberg, M.K.
Nazeeruddin, M. Neuburger, S. Schaffner, Chem.
Commun. (2008) 3717.
[4] E.C. Constable, A.H. Redondo, C.E. Housecroft, M.
Neuburger, S. Schaffner, Dalton Trans. (2009) 6634.
[5] B. Bozic-Weber, E.C. Constable, C.E. Housecroft, P.
Kopecky, M. Neuburger, J.A. Zampese, Dalton Trans.
40 (2011) 12584.
[6] G. Evindar, R.A. Batey, Org. Lett. 5 (2003) 133.
[7] B. Goodbrand, N.X. Hu, J. Org. Chem. 64 (1999) 670.
[8] R.G. Salomon, J.K. Kochi, J. Am. Chem. Soc. 96
(1974) 1137.
[9] J. Huang, M. Li, Y. Tang, H. Fang, L. Ding, J.
Wuham, Univ. Technol. Mater. 23 (2008) 606.
[10] A.J. Davison, J. Biol. Chem. 243 (1968) 6064.
[11] G.A. Ardiazzoia, S. Brenna, F. Castelli, S. Galli,
Inorg. Chim. Acta 362 (2009) 3507.
[12] G. Kickelbickm, M. Amirnasr, A.D. Khalaji, S.
Dehghanpour, Acta Cryst. 58 (2002) 381.
[13] G. Kickelbickm, M. Amirnasr, A.D. Khalaji, S.
Dehghanpour, Aust. J. Chem. 56 (2003) 323.
[14] S. Meghdadi, M. Amirnasr, K.J. Schenk, S.
Dehghanpour, Helv. Chim. Acta 85 (2002) 2807.
[15] A.D. Khalaji, M. Amirnasr, R. Welter, Anal. Sci. 22
(2006) 49.
[16] M. Amirnasr, M. Rasouli, K. Mereiter, Inog. Chim.
Acta 404 (2013) 230.
[17] A.D. Khalaji, R. Welter, M. Amirnasr, A.H. Barry,
Anal. Sci. 24 (2008) 137.
[18] A.D. Khalaji, M. Amirnasr, R. Welter, Russian J.
Coord. Chem. 36 (2010) 835.
[19] S. Ranjan, S.K. Dikshit, Trans. Met. Chem. 27 (2002)
668.
[20] M. Sandroni, L. Favereau, A. Planchat, H.A. Kilig,
N. Szuwarski, Y. Pellegrin, E. Blart, H.L. Bozec, M.
Boujtita, F. Odobel, J. Mater. Chem. A 2 (2014) 9944.
[21] N.P. Rath, E.M. Holt, K. Tanimura, J. Chem. Soc.
Dalton Trans. (1986) 2303.
[22] A. Volger, H. Kunkely, J. Am. Chem. Soc. 108 (1986)
7211.
[23] N.P. Rath, E.M. Holt, K. Tanimura, Inorg. Chem. 24
(1985) 3934.
[24] T.M. McCleskey, H.B. Gray, Inorg. Chem. 31 (1992)
1733.
[25] Z. Assefa, F. Destefano, M.A. Garepapaghi, J.H. Jr.
LaCasce, S. Ouellete, M.R. Corson, J.K. Nagle, M.H.
Patterson, Inorg. Chem. 30 (1991) 2862.
[26] A.C. Balch, V.J. Catalano, M.M. Olmstead, Inorg.
Chem. 29 (1990) 585.
[27] a) P.D. Harvey, Inorg. Chem. (1995) 34; b) D. Piche,
P. D. Harvey, Can. J. Chem. 72 (1994) 705.
[28] O. Horvath, Coord. Chem. Rev. 135 (1994) 303.
[29] S. Ranjan, S.K. Dikshit, Trans. Met. Chem. 27 (2002) 668.
[30] Comprehensive Asymmetric Catalysis I-III, inn: E.N.
Jacobsen, A. Pfaltz, H. Yamamoto (Ed.), Springer-
Verlag, New York, 1999.
[31] S. Goldstein, G. Czapski, Inorg. Chem. 24 (1985)
1087, and references therein.
[32] P. Hemmerich, C. Sigwart, Experientia 19 (1963) 488.
[33] D.D. Perrin, W.L.F. Armarego, D.R. Perrin,
Purification of Laboratory Chemicals, 2nd ed.,
Pergamon, Oxford, England, 1980.
[34] M. Amirnasr, A. Gorji, Thermochimica Acta 354
(2000) 31.
[35] Saint Program for the Reduction of Data from an Area
Detector, Version 4.05, Bruker Analytical X-Ray
Instruments, Inc., Madison, WI, 1996.
[36] Beurskens, P.T., Beurskens, G., Bosman, W.P., de
Gelder, R., Garcia-Granda, S., Gould, R.O., Israel, R.
Smits, J.M.M. (1996). The DIRDIF96 Program
System. Technical Report of the Crystallography
Laboratory, University of Nijmegen, The Netherlands.
[37] G.M. Sheldrick, Acta Cryst. A64 (2008) 112.
[38] M. Amirnasr, V. Langer, A. Amiri, S. Mallakpour, F.
Afshar, Polyhedron 29 (2010) 985.
[39] U. Siemeling, I. Scheppelmann, J. Heinze, B.
Neumann, A. Stammler, H.-G. Stammler, Chem. Eur.
J. 10 (2004) 5661.
[40] S.-M. Kuang, D.G. Cuttell, D.R. McMillin, P.E.
Fanwick, R.A. Walton, Inorg. Chem. 41 (2002) 3313.
[41] C.E.A. Palmer, D.R. McMillin, Inorg. Chem. 26
(1987) 3837.
[42] A. Mukherjee, R. Chakrabarty, S.W. Ng, G.K. Patra,
Inorg. Chim. Acta 363 (2010) 1707.
[43] R. Provencher, P.D. Harvey, Inorg. Chem. 35 (1996)
2235.
[44] N.G. Connelly, W.E. Geiger, Chem. Rev. 96 (1996)
877.
[45] S. Meghdadi, M. Amirnasr, M.H. Habibi, A. Amiri,
V. Ghodsi, A. Rohani, R.W. Harrington, W. Clegg,
Polyhedron 27 (2008) 27711.
[46] S.Brandès, R. Guilard, A.B. Lemeune, P. Chen, K.M.
Kadish, N. Goulioukina, I. Beletskaya, Eur. J. Inorg.
Chem. (2014) 3370.
[47] S. Meghdadi, M. Amirnasr, A. Mirhashemi, A. Amiri,
Polyhedron 97 (2015) 234.
[48] A. Houmam, E.M. Hamed, M. Emad, I.W.J. Still, J.
Am. Chem. Soc. 125 (2003) 7258.
[49] E. Portenkirchner, K. Oppelt, C. Ulbricht, D.A.M.
Egbe, H. Neugebauer, G. Knör, N.S. Sariciftci, J.
Organomet. Chem. 716 (2012) 19.