C‒X vs C‒H activation for the synthesis of the cyclometalated complexes [Pd(YPhbpy)X] (HPhbpy = 6-phenyl-2,2’-bipyridine; X/Y = (pseudo)halides)

Document Type : Research Paper

Authors

1 Universität zu Köln, Department Für Chemie, Institut Für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany

2 Chemistry Department Faculty of Science, Shiraz University, Shiraz 71454, Iran

Abstract

The organometallic Pd(II) complexes [Pd(Phbpy)X] (X = Cl, Br, or I) containing the tridentate C^N^N cyclometalating ligand 6-(phen-2-ide)-2,2’-bipyridine (–Phbpy) were synthesised through oxidative addition using the protoligands X‒Phbpy (X = Cl, Br, and I) and [Pd2(dba)3] tris(dibenzylideneacetone)dipalladium(0) in yields ranging from 23 to 51%. Further complexes [Pd(YPhbpy)Cl] resulted from C‒H palladation of the protoligand derivatives Y‒Phbpy with Y = F, Cl, Br, H, HO, MeO, and triflate) with K2PdCl4 in yields ranging from 52 to 98%. All protoligands and Pd(II) complexes were fully characterised using mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, and single crystal X-ray diffraction (XRD) for Y = F, MeO. The complexes were studied in detail using electrochemical (cyclic voltammetry) and spectroelectrochemical (UV-vis absorption) methods and UV-vis absorption spectroscopy. Relative shifts in the potentials of the ligand centred electrochemical reductions in the range ‒1.7 to ‒2.7 (vs. ferrocene/ferrocenium) or the Pd‒X centred oxidations around +1 V are in excellent agreement with variations in the density functional theory (DFT) calculated highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) constitutions. Long-wavelength absorption maxima attributable to metal(d)-to-ligand(π*) charge transfer transition observed in the range 350 to 550 nm were successfully modelled using time-dependent methods (TD-DFT) showing small contributions from triplet states.

Graphical Abstract

C‒X vs C‒H activation for the synthesis of the cyclometalated complexes [Pd(YPhbpy)X] (HPhbpy = 6-phenyl-2,2’-bipyridine; X/Y = (pseudo)halides)

Keywords


[1] S. Rej, Y. Ano, N. Chatani, Chem. Rev. 120 (2020)
1788.
[2] R.A. Alharis, C.L. McMullin, D.L. Davies, K. Singh,
S.A. Macgregor, Faraday Discuss 220 (2019) 386.
[3] P. Gandeepan, T. Müller, D. Zell, G. Cera, S.
Warratz, L. Ackermann, Chem. Rev. 119 (2019)
2192.
[4] J.A. Harrison, A.J. Nielson, M.A. Sajjad, P.
Schwerdtfeger, Organometallics 38 (2019) 1903.
[5] J.C.K. Chu, T. Rovis, Angew. Chem., Int. Ed. 57
(2018) 62.
[6] C. Sambiagio, D. Schönbauer, R. Blieck, T. DaoHuy, G. Pototschnig, P. Schaaf, T. Wiesinger, M.F.
Zia, J. Wencel-Delord, T. Besset, B.U.W. Maes, M.
Schnürch, Chem. Soc. Rev. 47 (2018) 6603.
[7] D.L. Davies, S.A. Macgregor, C.L. McMullin, Chem.
Rev. 117 (2017) 8649.
[8] J. He, M. Wasa, K.S.L. Chan, Q. Shao, J.-Q. Yu,
Chem. Rev. 117 (2017) 8754.
[9] Y.-N. Ma, S.-X. Li, S.-D. Yang, Acc. Chem. Res. 50
(2017) 1480.
[10] J. Le Bras, J. Muzart, Eur. J. Org. Chem. (2017)
3528.
[11] N. Della Ca’, M. Fontana, E. Motti, M. Catellani,
Acc. Chem. Res. 49 (2016) 1389.
[12] Y. Dang, X. Deng, J. Guo, C. Song, W. Hu, Z.-X.
Wang, J. Am. Chem. Soc. 138 (2016) 2712.
[13] T. Gensch, M.N. Hopkinson, F. Glorius, J. WencelDelord, Chem. Soc. Rev. 45 (2016) 2900.
[14] H. Tang, X.-R. Huang, J. Yao, H. Chen, J. Org.
Chem. 80 (2015) 4672.
[15] J.F. Hartwig, J. Am. Chem. Soc. 138 (2015) 2.
[16] J. Wencel-Delord, T. Dröge, F. Liu, F. Glorius,
Chem. Soc. Rev. 40 (2011) 4740.
[17] T.W. Lyons, M.S. Sanford, Chem. Rev. 110 (2010)
1147.
[18] K. Yamamoto, K. Higuchi, S. Kuwata, Y. Hayashi, S.
Kawauchi, T. Takata, Dalton Trans. 49 (2020) 2781.
[19] R. Deka, A. Sarkar, R.J. Butcher, P.C. Junk, D.R.
Turner, G.B. Deacon, H.B. Singh, Organometallics
39 (2020) 334.
[20] D.E. Janzen, M.A. Bruening, A.A. Mamiya, L.E.
Driscoll, D.A. da Silva Filho, Dalton Trans. 48
(2019) 11520.
[21] Q.-L. Yang, C.-Z. Li, L.-W. Zhang, Y.-Y. Li, X.
Tong, X.-Y. Wu, T.-S. Mei, Organometallics 38
(2019) 1208.
[22] Y.B. Dudkina, K.V. Kholin, T.V. Gryaznova, D.R.
Islamov, O.N. Kataeva, I.Kh. Rizvanov, A.I.
Levitskaya, O.D. Fominykh, M.Yu. Balakina, O.G.
Sinyashina, Y.H. Budnikova, Dalton Trans. 46
(2017) 165.
[23] P. Kar, M. Yoshida, A. Kobayashi, L. Routaboul, P.
Braunstein, M. Kato, Dalton Trans. 45 (2016) 14080.
[24] B.N. Nguyen, L.A. Adrio, T. Albrecht, A.J.P. White,
M.A. Newton, M. Nachtegaal, S.J.A. Figueroa,
K.K.M. Hii, Dalton Trans. 44 (2015) 16586.
[25] J.M. Racowski, A.R. Dick, M.S. Sanford, J. Am.
Chem. Soc. 131 (2009) 10974.
[26] G.L. Edwards, D.St.C. Black, G.B. Deacon, L.P.G.
Wakelin, Can. J. Chem. 83 (2005) 980.
[27] P. Jolliet, M. Gianini, A. von Zelewsky, G.
Bernardinelli, H. Stoeckli-Evans, Inorg. Chem. 35
(1996) 4883.
[28] X.-Q. Zhou, A. Busemann, M.S. Meijer, M.A.
Siegler, S. Bonnet, Chem. Commun. 55 (2019) 4695.
[29] J. Lin, C. Zou, X. Zhang, Q. Gao, S. Suo, Q. Zhuo,
X. Chang, M. Xie, W. Lu, Dalton Trans. 48 (2019)
10417.
[30] Q. Wan, W.-P. To, C. Yang, C.-M. Che, Angew.
Chem., Int. Ed. 57 (2018) 3089.
[31] C. Zou, J. Lin, S. Suo, M. Xie, X. Chang, W. Lu,
Chem. Commun. 54 (2018) 5319.
[32] M. Zvirzdinaite, S. Garbe, N. Arefyeva, M. Krause,
R. von der Stück, A. Klein, Eur. J. Inorg. Chem.
(2017) 2011.
[33] T.T.-H. Fong, C.-N. Lok, C.Y.-S. Chung, Y.-M. E.
Fung, P.-K. Chow, P.-K. Wan, C.-M. Che, Angew.
Chem., Int. Ed. 55 (2016) 11935.[34] A. Zucca, G.L. Petretto, M.L. Cabras, S. Stoccoro,
M.A. Cinellu, M. Manassero, G. Minghetti, J.
Organomet. Chem. 694 (2009) 3753.
[35] F. Neve, A. Crispini, C. Di Pietro, S. Campagna,
Organometallics 21 (2002) 3511.
[36] S.-W. Lai, T.-C. Cheung, M.C.W. Chan, K.-K.
Cheung, S.-M. Peng, C.-M. Che, Inorg. Chem. 39
(2000) 255.
[37] A. Zucca, M.A. Cinellu, M.V. Pinna, S. Stoccoro,
G. Minghetti, M. Manassero, M. Sansoni,
Organometallics 19 (2000) 4295.
[38] T. Karlen, A. Ludi, H.-U. Güdel, H. Riesen, Inorg.
Chem. 30 (1991) 2250.
[39] E.C. Constable, R.P.G. Henney, T.A. Leese, D.A.
Tocher, J. Chem. Soc., Dalton Trans. (1990) 443.
[40] E.C. Constable, R.P.G. Henney, T.A. Leese, D.A.
Tocher, J. Chem. Soc., Chem. Commun. (1990) 513.
[41] J. Föller, D.H. Friese, S. Riese, J.M. Kaminski, S.
Metz, D. Schmidt, F. Würthner, C. Lambert, C.M.
Marian, Phys. Chem. Chem. Phys. 22 (2020) 3217.
[42] L. Liu, X. Wang, F. Hussain, C. Zeng, B. Wang, Z.
Li, I. Kozin, S. Wang, ACS Appl. Mater. Interfaces
11 (2019) 12666.
[43] Y. Yao, C.-L. Hou, Z.-S. Yang, G. Ran, L. Kang, C.
Li, W. Zhang, J. Zhang, J.-L. Zhang, Chem. Sci. 10
(2019) 10170.
[44] P.-K. Chow, G. Cheng, G.S.M. Tong, C. Ma, W.-M.
Kwok, W.-H. Ang, C.Y.-S. Chung, C. Yang, F.
Wang, C.-M. Che, Chem. Sci. 7 (2016) 6083.
[45] P.-K. Chow, W.-P. To, K.-H. Low, C.-M. Che,
Chem. -Asian J. 9 (2014) 534.
[46] P.K. Chow, C. Ma, W.-P. To, G.S.M. Tong, S.-L.
Lai, S.C.F. Kui, W.-M. Kwok, C.-M. Che, Angew.
Chem., Int. Ed. 52 (2013) 11775.
[47] B. Soro, S. Stoccoro, G. Minghetti, A. Zucca, M.A.
Cinellu, S. Gladiali, M. Manassero, M. Sansoni,
Organometallics 24 (2005) 53.
[48] R.H. Fath, S.J. Hoseini, J. Organomet. Chem. 828
(2017) 16.
[49] P. Ramírez-López, A. Ros, A. Romero-Arenas, J.
Iglesias-Sigüenza, R. Fernández, J.M. Lassaletta, J.
Am. Chem. Soc. 138 (2016) 12053.
[50] H. Baier, A. Kelling, U. Schilde, H.-J. Holdt, Z.
Anorg. Allg. Chem. 642 (2016) 140.
[51] C. Icsel, V.T. Yilmaz, Y. Kaya, H. Samli, W.T.A.
Harrison, O. Buyukgungord, Dalton Trans. 44 (2015)
6880.
[52] A. Zucca, G.L. Petretto, S. Stoccoro, M.A. Cinellu,
G. Minghetti, M. Manassero, C. Manassero, L. Male,
A. Albinati, Organometallics 25 (2006) 2253.
[53] A. Zucca, M.A. Cinellu, G. Minghetti, S. Stoccoro,
M. Manassero, Eur. J. Inorg. Chem. (2004) 4484.
[54] A. Hofmann, L. Dahlenburg, R. van Eldik, Inorg.
Chem. 42 (2003) 6528.
[55] A. Zucca, A. Doppiu, M.A. Cinellu, S. Stoccoro, G.
Minghetti, M. Manassero, Organometallics 21 (2002)
783.
[56] A. Klein, B. Rausch, A. Kaiser, N. Vogt, A. Krest, J.
Organomet. Chem. 774 (2014) 86.
[57] A. Klein, A. Sandleben, N. Vogt, Proc. Nat. Acad.
Sci. India (PNASI) Section-A; Phys. Sci. 86 (2016)
533.
[58] A. Sandleben, N. Vogt, G. Hörner, A. Klein,
Organometallics 37 (2018) 3332.
[59] N. Vogt, V. Sivchik, A. Sandleben, G. Hörner, A.
Klein, Molecules 25 (2020) 997.
[60] C.M. Anderson, N. Oh, T.A. Balema, F.
Mastrocinque, C. Mastrocinque, D. Santos, M.W.
Greenberg, J.M. Tanski, Tetrahedron Lett. 57 (2016)
4574.
[61] I. Omae, J. Organomet. Chem. 696 (2011) 1128.
[62] A.G. Algarra, S.A. Macgregor, J.A. Panetier,
Mechanistic Studies of C-X Bond Activation at
Transition-Metal Centers in J. Reedijk, K.
Poeppelmeier (Eds.), Comprehensive Inorganic
Chemistry II (Second Edition), Publisher: Elsevier,
Amsterdam, 2013, pp. 635-694.
[63] P. Vermeeren, X. Sun, F.M. Bickelhaupt, Sci. Rep. 8
(2018) 10729.
[64] A. Diefenbach, G.T. de Jong, F.M. Bickelhaupt, J.
Chem. Theory Comput. 1 (2005) 286.
[65] P.-L.T. Boudreault, M.A. Esteruelas, E. Mora, E.
Oñate, J.-Y. Tsai, Organometallics 37 (2018) 3770.
[66] H. Wu, M.B. Hall, J. Phys. Chem. A 113 (2009)
11706.
[67] C.M. Anderson, M.W. Greenberg, T.A. Balema,
L.M. Duman, N. Oh, A. Hashmi, L. Ladner, K. Jain,
D. Yu, J.M. Tanski, Tetrahedron Lett. 56 (2015)6352.
[68] C.M. Anderson, G. Brown, M.W. Greenberg, D.
Yu, N. Bowen, R. Ahmed, M. Yost-Bido, A. Wray,
Tetrahedron Lett. 60 (2019) 151.
[69] M. Crespo, M. Martínez, S.M. Nabavizadeh, M.
Rashidi, Coord. Chem. Rev. 279 (2014) 115.
[70] A. Klein, M. Niemeyer, Z. Anorg. Allgem. Chem.
626 (2000) 1191.
[71] K. Butsch, R. Gust, A. Klein, I. Ott, M. Romanski,
Dalton Trans. 39 (2010) 4331.
[72] A. Klein, R. Lepski, Z. Anorg. Allg. Chem. 635
(2009) 878.
[73] A. Klein, Z. Anorg. Allgem. Chem. 627 (2001) 645.
[74] A. Klein, W. Kaim, Organometallics 14 (1995) 1176.
[75] A. Haseloer, R. Jordan, L.M. Denkler, M. Reimer, S.
Olthof, I. Schmidt, K. Meerholz, G. Hörner, A. Klein,
Dalton Trans. 50 (2021) 4311.
[76] J.C. Fuggle, N. Martensson, J. Electron Spectr. Relat.
Phenom. 21 (1980) 275.
[77] N. Vogt, A. Sandleben, L. Kletsch, S. Schäfer,
M.T. Chin, D.A. Vicic, G. Hörner, A. Klein,
Organometallics 40 (2021)
1776.
[78] L.E. Roy, P.J. Hay, R.L. Martin, J. Chem. Theory
Comput. 4 (2008) 1029.
[79] A. Klein, A. Kaiser, B. Sarkar, M. Wanner, J. Fiedler,
Eur. J. Inorg. Chem. (2007) 965.
[80] W. Kaim, J. Fiedler, Chem. Soc. Rev. 38 (2009)
3373.
[81] M. Krejčík, M. Daňek, F. Hartl, J. Electroanal. Chem.
317 (1991) 179.
[82] G.M. Sheldrick, Acta Crystallogr. Sect. A Found.
Crystallogr. 71 (2015) 3.
[83] G.M. Sheldrick, SHELXL-2017/1, Program for the
Solution of Crystal Structures; University of
Göttingen: Göttingen, Germany, 2017.
[84] G.M. Sheldrick, Crystal structure refinement with
SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 71
(2015) 3.
[85] STOE X-RED. Data Reduction Program, Version
1.31/Windows; STOE & Cie: Darmstadt, Germany
(2005).
[86] STOE X-SHAPE. Crystal Optimisation
for Numerical Absorption Correction, Version
1.06/Windows; STOE & Cie: Darmstadt, Germany
(1999).
[87] J.W. Mintmire, B.I. Dunlap, Phys. Rev. A 25 (1982)
88.
[88] C.K. Skylaris, L. Gagliardi, N.C. Handy, A.G.
Ioannou, S. Spencer, A. Willetts, J. Mol. Struct.:
THEOCHEM 501-50 (2000) 229.
[89] TURBOMOLE Program Package for ab initio
Electronic Structure Calculations V7.5, Turbomole
GmbH, Karlsruhe, Germany, 2020.
[90] C. Steffen, K. Thomas, U. Huniar, A. Hellweg, O.
Rubner, A. Schroer, J. Comput. Chem. 31 (2010)
2967.
[91] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97
(1992) 2571.
[92] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys.
100 (1994) 5829.
[93] A. Klamt, J. Phys. Chem. 99 (1995) 2224.
[94] A. Klamt, V. Jonas, T. Bürger, J.C.W. Lohrenz, J.
Phys. Chem. A 102 (1998) 5074.
[95] D.R. Lide (Ed.), CRC Handbook of Chemistry and
Physics, 87th Edition, Taylor & Francis, 2006.
[96] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988)
785.
[97] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[98] A.D. Becke, J. Chem. Phys. 98 (1993) 1372.
[99] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299.
[100] P.J. Hay, W.R. Wadt, J. Phys. Chem. 82 (1985) 270.