Conversion of Levulinic Acid to n-Butyl Levulinate over Mesoporous Zirconium Phosphate Catalysts

Document Type : Research Paper

Authors

Department of Chemistry, Isfahan University of Technology, 84154-83111 Isfahan, Iran

Abstract

In this study, mesoporous zirconium phosphates (m-ZrPs) with a different molar ratio of phosphate to zirconium were synthesized and used as the heterogeneous catalyst for the production of n-butyl levulinate from levulinic acid. The catalysts were characterized using various techniques such as N2 adsorption-desorption, XRD, FT-IR, ICP-OES, SEM, and TEM. The prepared catalysts were confirmed to possess the mesoporous structure with a high surface area. Among the synthesized catalysts, m-ZrP-2 showed the best performance in the conversion of levulinic acid to n-butyl levulinate. The reaction conditions were optimized on parameters such as reaction time, temperature, amount of catalyst, and the molar ratio of LA to n-butanol. Temperature 120 °C, reaction time 7 hours, the ratio of acid to alcohol 1:9, and 0.01g catalyst were selected as the optimum conditions. In addition, the selected m-ZrP-2 catalyst was successfully recycled for six consecutive cycles without significant loss in its activity.

Graphical Abstract

Conversion of Levulinic Acid to n-Butyl Levulinate over Mesoporous Zirconium Phosphate Catalysts

Keywords


[1] C.O. Tuck, E. Pérez, I.T. Horváth, R.A. Sheldon, M.
Poliakoff, Science 337 (2012) 695.
[2] J.J. Bozell, G.R. Petersen, Green Chem. 2010, 12, 539
[3] G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106
(2006) 4044.
[4] Z. Babaei, A.N. Chermahini, M. Dinari, M. Saraji, A.
Shahvar, Sustainable Energy Fuels 3 (2019) 1024.
[5] G. Centi, P. Lanzafame, S. Perathoner, Catal. Today 16
(72011) 14.
[6] F.D. Pileidis, M. Titirici, Chem.Sus. Chem. 9 (2016)
562.
[7] B. Girisuta, L. Janssen, H.J. Heeres, Ind. Eng. Chem.
Res. 46 (2007) 1696.
[8] S. Kumaravel, S. Thiripuranthagan, R. Radhakrishnan,
E. Erusappan, M. Durai, A. Devarajan, A. Mukannan,
J. Nanosci. Nanotechnol. 19 (2019) 6965.
[9] E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A.
Bruce, J.G. Goodwin, Ind. Eng. Chem. Res. 44 (2005)
5353.
[10] E. Christensen, A. Williams, S. Paul, S. Burton, R.L.
McCormick, Energ. Fuel 25 (2011) 5422.
[11] J.R. Kean, A.E. Graham, Catal. Commun. 59 (2015)
175.
[12] F.G. Cirujano, A. Corma, F.X.L. Xamena, Chem. Eng.
Sci. 124 (2015) 52.
[13] L. Peng, X. Gao, K. Chen, Fuel. 160 (2015) 123.
[14] A. Corma, Chem. Rev. 95 (1995) 559.
[15] T. Okuhara, Chem. Rev. 102 (2002) 3641.
[16] Y. Kuwahara, T. Fujitani, H. Yamashita, Catal. Today
237 (2014) 18.
[17] D. Song, S. An, Y. Sun, Y. Guo, J. Catal. 333 (2016)
184.
[18] S.B. Onkarappa, M. Javoor, S.S. Mal, S. Dutta, Chem.
Select 4 (2019) 2501.
[19] D.R. Fernandes, A.S. Rocha, E.F. Mai, C.J.A. Mota,
V.T. Da Silva, Appl. Catal. A Gen. 425 (2012) 199.
[20] M.A. Tejero, E. Ramírez, C. Fité, J. Tejero, F. Cunill,
Appl. Catal. A Gen. 517 (2016) 56.
[21] S. Dharne, V.V. Bokade, J. Nat. Gas Chem. 20 (2011)
18.
[22] S.S.R. Gupta, M.L. Kantam, Catal. Commun. 124
(2019) 62.
[23] A. Taguchi, F. Schüth, Micropor. Mesopor. Mat. 77
(2005) 1.
[24] S. Soltani, U. Rashid, S.I. Al-Resayes, I.A. Nehdi,
Mesoporous Catalysts for Biodiesel Production: A
New Approach, in: Clean Energy Sustain. Dev.,
Elsevier, 2017, p. 487.
[25] E. Mannei, F. Ayari, E. Asedegbega-Nieto, M.
Mhamdi, G. J. Iran. Chem. Soc. 17 (2020) 1087.
[26] A.N. Chermahini, M.K. Omran, H.A. Dabbagh, G.
Mohammadnezhad, New J. Chem. 39 (2015) 4814.
[27] F. Mumtaz, M.F. Irfan, M.R. Usman, J. Iran. Chem.
Soc. (2021), DOI: Ñ0.1007/s13738-021-02183-2.
[28] K. Niknam, H. Hashemi, M. Karimzadeh, D. Saberi, J.
Iran. Chem. Soc. 17 (2020) 3095.
[29] F. Ahmadian, A.R. Barmak, E. Ghaderi, M. Bavadi, H.
Raanaei, K. Niknam, J. Iran. Chem. Soc. 16 (2019)
2647.
[30] N. Pasha, N. Lingaiah, R. Shiva, Catal. Lett. 149
(2019) 2500.
M.P. Pachamuthu, V.V. Srinivasan, R. Karvembu, R.
Luque, Micropor. Mesopor. Mat. 287 (2019) 159.
[31] M.M. Tabrizi, A.N. Chermahini, Z.
Mohammadbagheri, J. Environ. Chem. Eng. 7 (2019)
103420.[32] A.N. Chermahini, M. Nazeri, Fuel Process. Technol.
167 (2017) 442.
[33] A.N. Chermahini, M. Assar, J. Iran. Chem. Soc. 16
(2019) 2045.
[34] D. Song, P. Zhang, Y. Sun, Q. Zhang, Y. Guo,
Micropor. Mesopor. Mat. 279 (2019) 352.
[35] A. Sinhamahapatra, N. Sutradhar, B. Roy, A. Tarafdar,
H.C. Bajaj, A.B. Panda, Appl. Catal. A Gen. 385
(2010) 22.
[36] A. Jain, A.M. Shore, S.C. Jonnalagadda, K.V.
Ramanujachary, A. Mugweru, Appl. Catal. A Gen. 489
(2015) 72.
[37] K.N. Rao, A. Sridhar, A.F. Lee, S.J. Tavener, N.A.
Young, K. Wilson, Green Chem. 8 (2006) 790.
[38] A. Sinhamahapatra, N. Sutradhar, S. Pahari, H.C.
Bajaj, A.B. Panda, Appl. Catal. A Gen. 394 (2011) 93.
[39] C.A. Emeis, J. Catal. 141 (1993) 347.
[40] H.-N. Kim, S.W. Keller, T.E. Mallouk, J. Schmitt, G.
Decher, Chem. Mater. 9 (1997) 1414.
[41] B. Chakraborty, B. Viswanathan, Catal Today 49
(1999) 253.
[42] E. Siva Sankar, G.V. Ramesh Babu, K. Murali, B.
David Raju, K.S. Rama Rao, RSC Adv. 6 (2016)
20230.
Volume 5, Issue 1
Spring and Summer
2021
Pages 149-162
  • Receive Date: 30 November 2020
  • Revise Date: 25 February 2021
  • Accept Date: 27 February 2021