Catalytic Properties of Ag@Zn-MOF Nanocomposites for Dehydrogenation of Ammonia Borane

Document Type : Research Paper

Authors

Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

The utilization of NH3BH3 (ammonium borane) as a H2 gas storage compound is restricted by its slow rate for H2 evolution. In this study, three Ag@Zn-MOF nanocomposites with different amounts of Ag:Zn-MOF ratio of 0.25:1 (1), 0.5:1 (2), and 1:1 (3) were investigated as catalysts for hydrogen evolution from hydrolysis of NH3BH3. Well dispersed encapsulated Ag nanoparticles (30-60 nm) in the matrix of the composites have been prepared in the presence of Zn(II) metal-organic frameworks (Zn-MOFs) in an aqueous solution by using NaBH4 as a reducing agent at room temperature. These nanocomposites have shown good catalytic activity for the hydrolysis of NH3BH3.

Graphical Abstract

Catalytic Properties of Ag@Zn-MOF Nanocomposites for Dehydrogenation of Ammonia Borane

Keywords


[1] S. Eken Korkut, H. Küçükkeçeci, Ö. Metin, ACS Appl.
Mater. Interfaces 12 (2020) 8130.
[2] L. Xu, S. Xiong, S. Zhong, S. Bai, Y. Jiao, J. Chen,
Vacuum 174 (2020) 109213.
[3] S. Liu, X. Chen, Z.-J. Wu, X.-C. Zheng, Z.-K. Peng, P.
Liu, Int. J. Hydrog. Energy 44 (2019) 23610.
[4] Y.-T. Li, X.-L. Zhang, Z.-K. Peng, P. Liu, X.-C.
Zheng, ACS Sustain. Chem. Eng. 8 (2020) 8458.
[5] H. Çelık Kazici, Ş. Yilmaz, T. Şahan, F. Yildiz, Ö.F.
Er, H. Kivrak, Front. Energy 14 (2020) 578.
[6] Y. Wu, Y. Sun, W. Fu, X. Meng, M. Zhu, S.
Ramakrishna, Y. Dai, ACS Appl. Nano Mater. 3
(2020) 2713.
[7] M. Gao, Y. Yu, W. Yang, J. Li, S. Xu, M. Feng, H. Li,
Nanoscale 11 (2019) 3506.
[8] P. Song, Y. Li, W. Li, B. He, J. Yang, X. Li, Int. J.
Hydrog. Energy 36 (2011) 10468.
[9] J. Zhang, L. Wang, B. Zhang, H. Zhao, U. Kolb, Y.
Zhu, L. Liu, Y. Han, G. Wang, C. Wang, D.S. Su, B.C.
Gates, F.-S. Xiao, Nat. Catal. 1 (2018) 540.
[10] A. Zanon, F. Verpoort, Coord. Chem. Rev. 353 (2017)
201.
[11] A. Zhou, Y. Dou, J. Zhou, J.-R. Li, Chem. Sus. Chem.
13 (2020) 205.
[12] W.-G. Cui, G.-Y. Zhang, T.-L. Hu, X.-H. Bu, Coord.
Chem. Rev. 387 (2019) 79.
[13] Y. Liu, Y. Zhao, X. Chen, Theranostics 9 (2019) 3122.
[14] H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.-C. Zhou,
Mater. Today 21 (2018) 108.
[15] M. Yadav, Q. Xu, Chem. Commun. 49 (2013) 3327.
[16] Y.K. Park, S.B. Choi, H.J. Nam, D.-Y. Jung, H.C.
Ahn, K. Choi, H. Furukawa, J. Kim, Chem. Commun.
46 (2010) 3086.
[17] Y. Zhao, J. Zhang, J. Song, J. Li, J. Liu, T. Wu, P.
Zhang, B. Han, Green Chem. 13 (2011) 2078.
[18] Q.-L. Zhu, J. Li, Q. Xu, J. Am. Chem. Soc. 135 (2013)
10210.
[19] T. Liu, Q. Wang, B. Yan, M. Zhao, W. Li, H. Bie, J.
Nanomater. 2015 (2015) 679526.
[20] R. Sacourbaravi, Z. Ansari-Asl, M. Kooti, V. Nobakht,
E. Darabpour, J. Inorg. Organomet. Polym. Mater. 30
(2020) 4615.
[21] A. Kantürk Figen, M.B. Pişkin, B. Coşkuner, V.
İmamoğlu, Int. J. Hydrog. Energy 38 (2013) 16215.
[22] Q. Xu, M. Chandra, J. Power Sources 163 (2006) 364.
[23] J. Huang, Y. Tan, Q. Gu, L. Ouyang, X. Yu, M. Zhu,
J. Mater. Chem. A 3 (2015) 5299.
[24] A.K. Figen, M.B. Pişkin, B. Coşkuner, V. İmamoğlu,
Int. J. Hydrog. Energy 38 (2013) 16215.
[25] Y.-J. Wu, C.-Y. Wang, ACS Sustain. Chem. Eng. 7
(2019) 16013.