Probing the Effect of Bipyridine Derivatives on the Reduction of Platinum(IV) Complexes by 5ˊ-dGMP

Document Type : Research Paper

Authors

Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran 19585-936, Iran

Abstract

In previous studies, the mechanism for the reduction of Tetrachrorido platinum(IV) complex with 5ˊ-dGMP has been investigated. In this research, two platinum(IV) complexes [PtCl4(N-N)] (N-N = 4,4ˊ-dimethyl -2,2ˊ-bipyridine, A and 5,5ˊ-dimethyl -2,2ˊ-bipyridine, B) were considered and compared with PtIVdach (N-N = diamino cyclohexane) theoretically, by means of the Becke3LYP DFT functional calculations. The mechanism of two electron reduction were thoroughly followed for three compounds. The relatives Gibbs energies for all intermediate, transition states and products were calculated and compared. LUMO –HOMO energy gap was also determined, where this energy gap was 3.5ev in complexes A and B; and 4.5ev in PtIVdach. The overall calculated Gibbs energy for the formation of corresponding PtII complex is 30.0 kJ/mol in A, 28.5 kJ/mol in B and 43.2 kJ/mol in PtIVdach. Thus compounds A and B illustrate more favorability for the proposed two electron reduction, interestingly. The results demanded that the hydrogen bonds play a critical role in the stability of intermediates and transition states in PtIVdach. The effective parameters in the mechanism were also discussed.

Keywords


[1] B. Rosenberg, L. Van Camp, T. Krigas, Nature 205
(1965) 698.
[2] S. Fiuza, A. Amado, P.J. Oliveira, V.A. Sardão, L.B.
De Carvalho, M. Marques, Lett. Drug Des. Discov. 3
(2006) 149.
[3] M. Morris, P.J. Eifel, J. Lu, P.W. Grigsby, C.
Levenback, R.E. Stevens, M. Rotman, D.M.
Gershenson, D.G. Mutch, N. Engl. J. Med. 340 (1999)
1137.
[4] J.H. Schiller, D. Harrington, C.P. Belani, C. Langer,
A. Sandler, J. Krook, J. Zhu, D.H. Johnson, N. Engl.
J. Med. 346 (2002) 92.
[5] N.J. Wheate, S. Walker, G.E. Craig, R. Oun,
Dalton Trans. 39 (2010) 8113.
[6] C.A. Rabik, M.E. Dolan, Cancer Treat. Rev. 33
(2007) 9.
[7] P.J. O'dwyer, J.P. Stevenson, S.W. Johnson, Drugs 59
(2000) 19.
[8] T.C. Johnstone, S.J. Lippard, Chem. Rev. 116 (2016)
3436.
[9] M. Ravera, E. Gabano, M.J. McGlinchey, D. Osella,
Inorg. Chem. Acta 492 (2019) 32.
[10] S. Kanvah, J. Joseph, Acc. Chem. Res. 43 (2010) 280.
[11] R. Franco, O. Schoneveld, A.G. Georgakilas, M.I.
Panayiotidis, Cancer Lett. 266 (2008) 6.
[12] C.J. Burrows, J.G. Muller, Chem. Rev. 98 (1998)
1109.
[13] E.D. Olmon, P.A. Sontz, A.M. Blanco-Rodríguez, M.
Towrie, I.P. Clark, A. Vlcek Jr, J.K. Barton, J. Am.
Chem. Soc. 133 (2011) 13718.
[14] S. Choi, R.B. Cooley, A. Voutchkova, C.H. Leung, L.
Vastag, D.E. Knowles, J. Am. Chem. Soc. 127 (2005)
1773.
[15] S. Choi, L. Vastag, Y.C. Larrabee, M.L. Personick,
K.B. Schaberg, B.J. Fowler, R.K. Sandwick, G.
Rawji, Inorg. Chem. 47 (2008) 1352.
[16] A. Ariafard, E.S. Tabatabaie, S. Aghmasheh, S.
Najaflo, B.F. Yates, Inorg. Chem. 51 (2012) 8002.
[17] A. Abedi, N. Safari, V. Amani, S. Tavajohi, S.N.
Ostad, Inorg. Chim. Acta 367 (2011) 679.
[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E.
Scuseria, M.A. Robb, J.R. Cheesmen, G. Scalmani, V.
Barone, B. Mennucci, G.A. Petersson, H. Nakatesuji,
M. Caricato, X. Li, H.P. Hratechian, A.F. Lzmaylov,
J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakai, T. Vereven, J.A. Montgomery, Jr.J.E.
Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E.
Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N.
Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi,
C. Pomelli, J.W. Ochterski, R.L. Martin, K.
Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador,
J.J. Dannenberg, S. Dapprich, A.D. Daniels, O.
Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J.
Fox, Gaussian, Inc., Wallingford CT, 2013.
[19] Y. Zhao, D.G. Truhlar, Acc. Chem. Res. 41 (2008)
157.
[20] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270.
[21] W.R. Wadt, P.J. Hay, J. Chem. Phys. 82 (1985) 284.
[22] P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28
(1973) 213.
[23] A.W. Ehlers, M. Bohme, S. Dapprich, A. Gobbi, A.
Hollwarth, V. Jonas, K.F. Kohler, R. Stegmann, A.
Veldkamp, G. Frenking, Chem. Phys. Lett. 208 (1993)
111.
[24] K. Fukui, Acc. Chem. Res. 14 (1981) 363.
[25] K. Fukui, J. Phys. Chem. 74 (1970) 4161.
[26] V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998)
1995.
[27] F. Weigend, F. Furche, R. Ahlrichs, J. Chem.
Phys. 119 (2003) 12753.
[28] A. Ariafard, ACS. Catal. 4 (2014) 2896.
[29] K. Sayin, D. Karakaş, Spectrochim. Acta A. Mol.
Biomol. Spectrosc. 188 (2018) 537.
[30] E. Glendening, A. Reed, J. Carpenter, F. Weinhold,
NBO, version 3.1; Gaussian. Inc: Pittsburgh, PA.
2003.
[31] A. Ariafard, N.M. Ghohe, K.K. Abbasi, A.J. Canty,
B.F. Yates, Inorg. Chem. 52 (2012) 707.
[32] S. Aghmasheh, A. Abedi, Rus. J. Phys. Chem. 94
(2020) 1408.
[33] F. Sebesta, J.V. Burda, J. Phys. Chem. B 121 (2017)
4400.
[34] M. ZareDehnavi, S.N. Ostad, A. Abedi, Inorg. Chim.
Acta 486 (2019) 594.
Volume 4, Issue 2
Autumn and Winter
2020
Pages 295-303
  • Receive Date: 03 October 2020
  • Revise Date: 23 November 2020
  • Accept Date: 29 November 2020