Inorganic Nanostructures Especially Obtained from Liquid/Liquid Interface by Reduction of Organometallic Precursors: A Mini Review

Document Type : Review

Authors

Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran

Abstract

The synthesis routes for the preparation of nanostructures have been developed in the past decade. Organometallic precursors played an important role in the synthesis of nanomaterials via various methods of synthesis. In this investigation, nanostructures were synthesized from organometallic precursors and applied as catalyst in various reactions. This mini review is mostly devoted to the research efforts carried out by our group on the search for new classes of organometallic precursors and applying them for the synthesis of nanostructured catalysts with different morphologies. Also we have investigated the effect of alloying and presence of support on catalytic activity. We found that stabilization of nanostructures on graphene oxide, aminoclay, ionic liquids or cyclodextrin supports can increase the catalytic activity by increasing the stability and dispersion. Furthermore, alloyed nanostructures can be efficient like noble metal catalysts in catalytic applications. Also, thin films fabricated by this method showed higher quality in comparison with the thin films fabricated by other synthetic methods.

Keywords


[1] B. Cormary, F. Dumestre, N. Liakakos, K. Soulantica,
B. Chaudret, Dalton Trans. 42 (2013) 12546.
[2] T. Zhai, L. Li, Y. Ma, M. Liao, X. Wang, X. Fang, J.
Yao, Y. Bando, D. Golberg, Chem. Soc. Rev. 40
(2011) 2986.
[3] C.N.R. Rao, A. Govindaraj, Adv. Mater. 21 (2009)
4208.
[4] S. Hu, H. Liu, P. Wang, X. Wang, J. Am. Chem. Soc.
135 (2013) 11115.
[5] S.J. Hoseini, M. Rashidi, M. Bahrami, J. Mater.
Chem. 21 (2011) 16170.
[6] S.J. Hoseini, N. Mousavi, M. Roushani, L.
Mosaddeghi, M. Bahrami, M. Rashidi, Dalton Trans.
42 (2013) 12364.
[7] S.J. Hoseini, M. Dehghani, H. Nasrabadi, Catal. Sci.
Technol. 4 (2014) 1078.
[8] S.J. Hoseini, M. Bahrami, M. Zanganeh, M.
Roushani, M. Rashidi, RSC Adv. 6 (2016) 45753.
[9] S.J. Hoseini, M. Bahrami, M. Maddahfar, R. Hashemi
Fath, M. Roushani, Appl. Organomet. Chem. 32
(2018) e3894.
[10] S.J. Hoseini, Z. Barzegar, M. Bahrami, M. Roushani,
M. Rashidi, J. Organomet. Chem. 769 (2014) 1.
[11] S. Saberi Sarmoor, S.J. Hoseini, R. Hashemi Fath, M.
Roushani, M. Bahrami, Appl. Organomet. Chem. 32
(2018) e3979.
[12] S.J. Hoseini, M. Bahrami, M. Roushani, RSC Adv. 4
(2014) 46992.
[13] M. Bahrami, S.J. Hoseini, Appl. Organomet. Chem.
32 (2018) e3920.
[14] S.J. Hoseini, N. Aramesh; M. Bahrami, Appl.
Organomet. Chem. 31 (2017) e3675.
[15] P. Fatahi, S.J. Hoseini, Appl. Organomet. Chem. 32
(2018) e4187.
[16] S.J. Hoseini, E. Jahanshahi, R. Hashemi Fath, Appl.
Organomet. Chem. 31 (2017) e3718.
[17] S.J. Hoseini, B. Habib Agahi, Z. Samadi Fard, R.
Hashemi Fath, M. Bahrami, Appl. Organomet. Chem.
31 (2017) e3607.
[18] S.J. Hoseini, M. Bahrami, N. Sadri, N. Aramesh, Z.
Samadi Fard, H. Rafatbakhsh Iran, B. Habib Agahi,
M. Maddahfar, M. Dehghani, A. Zarei Baba Arabi, N.
Heidari, S.F. Hashemi Fard, Z. Moradi, J. Colloid
Interface Sci. 513 (2018) 602.
[19] S.J. Hoseini, A. Zarei, H. Rafatbakhsh Iran, Appl.
Organomet. Chem. 29 (2015) 489.
[20] S.J. Hoseini, R. Hashemi Fath, RSC Adv. 6 (2016)
76964.
[21] C.N.R. Rao, K.P. Kalyanikutty, Acc. Chem. Res. 41
(2008) 489.[22] C.N.R. Rao, G.U. Kulkarni, V.V. Agrawal, U.K.
Gautam, M. Ghosh, U. Tumkurkar, J. Colloid
Interface Sci. 15 (2005) 305.
[23] C.N.R. Rao, V.V. Agrawal, K. Biswas, U.K. Gautam,
M. Ghosh, A. Govindaraj, G.U. Kulkarni, K.P.
Kalyanikutty, K. Sardar, S.R.C. Vivekchand, Pure
Appl. Chem. 78 (2006) 1619.
[24] U.K. Gautam, M. Ghosh, C.N.R. Rao, Chem. Phys.
Lett. 381 (2003) 1.
[25] a) S.J. Hoseini, M. Bahrami, M. Dehghani, RSC Adv.
4 (2014) 13796; b) S.J. Hoseini, M. Bahrami, Z.
Samadi Fard, S.F. Hashemi Fard, M. Roushani, B.
Habib Agahi, R. Hashemi Fath, S. Saberi Sarmoor,
Int. J. Hydrogen Energy 43 (2018) 15095.
[26] M. Gheitasi Zarooni, S.J. Hoseini, M. Bahrami, M.
Roushani, S.M. Nabavizadeh, J. Inorg. Organomet.
Polym. (2020) https://doi.org/10.1007/s10904-020-
01514-9.
[27] S. Hamzepour Sharfand, S.J. Hoseini, M. Bahrami,
Polyhedron 151 (2018) 483.
[28] A. Zare Asadabadi, S.J. Hoseini, M. Bahrami, S.M.
Nabavizadeh, New J. Chem. 43 (2019) 6513.
[29] S.J. Hoseini, M. Bahrami, S.M. Nabavizadeh, New J.
Chem. 43 (2019) 15811.
[30] a) M. Faraday, Philos. Trans. R. Soc. London 147
(1857) 145; b) V. Divya, M.V. Sangaranarayanan, J.
Nanosci. Nanotechnol. 15 (2015) 6863.
[31] L.L. Zhang, Y.H. Jiang, Y.L. Ding, M. Povey, D.
York, J. Nanopart. Res. 479 (2007) 9.
[32] H.S. Zhou, I. Honma, H. Komiyama, J.W. Haus, J.
Phys. Chem. 97 (1993) 895.
[33] C.N.R. Rao, P.J. Thomas, G.U. Kulkarni,
Nanocrystals: Synthesis, Properties and Applications,
Springer-Verlag Berlin Heidelberg 2007, P. 29.
[34] H.I. Schlesinger, H.C. Brown, A.E. Finholt, J. Am.
Chem. Soc. 75 (1953) 215.
[35] J. Turkevich, P.C. Stevenson, J. Hillier, J. Discuss.
Farad. Soc. 11 (1951) 55.
[36] K. Piradashvili, E.M. Alexandrino, F.R. Wurm, K.
Landfester, Chem. Rev. 116 (2016) 2141.
[37] A. Berduque, A. Sherburn, M. Ghita, R.A.W. Dryfe,
D.W.M. Arrigan, Anal. Chem. 77 (2005) 7310.
[38] M.A. Lopez-Quintela, C. Tojo, M.C. Blanco, L.G.
Rio, J.R. Leis, Curr. Opin. Colloid Interface Sci. 9
(2004) 264.
[39] E. Scoppola, E.B. Watkins, R.A. Campbell, O.
Konovalov, L. Girard, J.F. Dufreche, G. Ferru, G.
Fragneto, O. Diat, Angew. Chem. 128 (2016) 9472.
[40] L. Leclercq, A. Mouret, A. Proust, V. Schmitt, P.
Bauduin, J.M. Aubry, V. Nardello-Rataj, Chem. Eur.
J. 18 (2012) 14352.
[41] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, V.V.
Agarwal, U.K. Gautam, M. Ghosh, Curr. Sci. 85
(2003) 1041.
[42] V.V. Agrawal, P. Mahalakshmi, G.U. Kulkarni,
C.N.R. Rao, Langmuir 22 (2006) 1846.
[43] U.K. Gautam, M. Ghosh, C.N.R. Rao, Langmuir 20
(2004) 10775.
[44] V.V. Agrawal, G.U. Kulkarni, C.N.R. Rao, J. Phys.
Chem. B 109 (2005) 7300.
[45] K.P. Kalyanikutty, U.K. Gautam, C.N.R. Rao, Solid
State Sci. 8 (2006) 296.
[46] C.N.R. Rao, H.S.S.R. Matte, R. Voggu, A.
Govindaraj, Dalton Trans. 41 (2012) 5089.
[47] A.G. Volkov, Liquid Interfaces in Chemical,
Biological and Pharmaceutical Applications, edited by
M. Dekker, New York, USA, 2001.
[48] F. Bresme, M. Oettel, J. Phys. Condens. Matter 19
(2007) 1.
[49] Y. Grunder, M.D. Fabian, S.G. Booth, D. Plana, D.J.
Fermin, P.I. Hill, R.A.W. Dryfe, Electrochim. Acta
110 (2013) 809.
[50] J.J. Nieminen, I. Hatay, P.Y. Ge, M.A. Mendez, L.
Murtomaki, H.H. Girault, Chem. Commun. 47 (2011)
5548.
[51] K. Isobe, P.M. Bailey, P.M. Maitlis, J. Chem. Soc.,
Chem. Commun. (1981) 808.
[52] G. Schmid, R. Pfeil, R. Boese, F. Brandermann, S.
Meyer, G.H.M. Calis, J.W.A. Van der Velden, Chem.
Ber. 114 (1981) 3634.
[53] B. Chaudret, D.J. Cole-Hamilton, G. Wilkinson, J.
Chem. Soc., Dalton Trans. (1978) 1739.
[54] H.S. Booth, L.F. Audrieth, J.C. Bailar, Inorganic
synthesis, McGraw-Hill, New York and London 1939.
[55] A.P. Ginsberg, Inorganic Syntheses. New Jersey:
Inorganic Syntheses, Inc. 1990.
[56] M.K. Chaudhuri, S.K. Ghosh, J. Chem. Soc. Dalton
Trans. (1983) 839.[57] Y. Xiong, H. Cai, B.J. Wiley, J. Wang, M.J. Kim, Y.
Xia, J. Am. Chem. Soc. 129 (2007) 3665.
[58] M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. LizMarzan, Chem. Soc. Rev. 37 (2008) 1783.
[59] S.K. Meena, S. Celiksoy, P. Schafer, A. Henkel, C.
Sonnichsen, M. Sulpizi, Phys. Chem. Chem. Phys. 18
(2016) 13246.
[60] C. Wang, D. van der Vliet, K.L. More, N.J. Zaluzec,
S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J.
Pearson, A.P. Paulikas, G. Karapetrov, D. Strmcnik,
N.M. Markovic, V.R. Stamenkovic, Nano Lett. 11
(2011) 919.
[61] X.L. Cai, C.H. Liu, J. Liu, Y. Lu, Y.N. Zhong, K.Q.
Nie, J.L. Xu, X. Gao, X.H. Sun, S.D. Wang, NanoMicro Lett. 9 (2017) 48.
[62] A.K. Singh, Q. Xu, Chem. Cat. Chem. 5 (2013) 652.
[63] H. Zhang, M. Jin, H. Liu, J. Wang, M.J. Kim, D.
Yang, Z. Xie, J. Liu, Y. Xia, ACS Nano 5 (2011)
8212.
[64] D. Huang, X. Bai, L. Zheng, J. Phys. Chem. C 115
(2011) 14641.
[65] J.N. Zheng, L.L. He, F.Y. Chen, A.J. Wang, M.W.
Xue, J.J. Feng, J. Mater. Chem. A 2 (2014) 12899.
[66] X. Lu, X. Bian, G. Nie, C. Zhang, C. Wang, Y. Wei,
J. Mater. Chem. 22 (2012) 12723.
[67] K.K.R. Datta, A. Achari, M. Eswaramoorthy, J.
Mater. Chem. A 1 (2013) 6707.
[68] G. Law, P.R. Watson, Langmuir 17 (2001) 6138.
[69] S.J. Hoseini, H. Ghanavat Khozestan, R. Hashemi
Fath, RSC Adv. 5 (2015) 47701.
[70] S.J. Hoseini, V. Heidari, H. Nasrabadi, J. Mol. Catal.
A Chem. 396 (2015) 90.
[71] R. Hashemi Fath, S.J. Hoseini, J. Organomet. Chem.
828 (2017) 16.
[72] R. Hashemi Fath, S.J. Hoseini, Appl. Organomet.
Chem. 32 (2018) e3964.
[73] S.S. Siwal, S. Thakur, Q.B. Zhang, V.K. Thakur,
Mater. Today Chem. 14 (2019) 100182.
[74] N.A. Karim, S.K. Kamarudin, Appl. Energy 103
(2013) 212.
[75] Z.A.C. Ramli, S.K. Kamarudin, Nanoscale Res. Lett.
13 (2018) 410.
[76] X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu, G.
Wu, Sustain. Energ. Fuels 4 (2020) 15.
[77] D.H. Kwak, Y.W. Lee, K.H. Lee, A.R. Park, J.S.
Moon, K.W. Park, Int. J. Electrochem. Sci. 8 (2013)
5102.
[78] H. Li, D. Kang, H. Wang, R. Wang, Int. J.
Electrochem. Sci. 6 (2011) 1058.
[79] O. Lupan, L. Chow, G. Chai, H. Heinrich, Chem.
Phys. Lett. 465 (2008) 249.
[80] T. Maiyalagan, T.O. Alaje, K. Scott, J. Phys. Chem. C
116 (2012) 2630.
[81] H. Sun, J. You, M. Yang, F. Qu, J. Power Sources 205
(2012) 231.
[82] X. Ge, R. Wang, P. Liu, Y. Ding, Chem. Mater. 19
(2007) 5827.
[83] Y. Kang, J.B. Pyo, X. Ye, T.R. Gordon, C.B. Murray,
ACS Nano 6 (2012) 5642.
[84] A.J. Bard, L.R. Faulkner, Electrochemical Methods
Fundamentals and Application, 1980, p. 236.
[85] N. Ghanbari, S.J. Hoseini, M. Bahrami, Ultrason.
Sonochem. 39 (2017) 467.
[86] R.K. Rai, K. Gupta, S. Behrens, J. Li, Q. Xu, S.K.
Singh, ChemCatChem. 7 (2015) 1806.
[87] A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.M.
Basset, V. Polshetttiwar, Chem. Soc. Rev. 40 (2011)
5181.
[88] J. Xiang, P. Li, H. Chong, L. Feng, F. Fu, Z. Wang, S.
Zhang, M. Zhu, Nano Res. 7 (2014) 1337.
[89] M. Nasrollahzadeh, S.M. Sajadi, A. RostamiVartooni, M. Khalaj, J. Mol. Catal. A: Chem. 396
(2015) 31.
[90] J. Zhou, X. Guo, C. Tu, X. Li, H. Sun, J. Organomet.
Chem. 694 (2009) 697.
[91] V. Gaikwad, R. Kurane, J. Jadhav, R. Salunkhe, G.
Rashinkar, Appl. Catal. A 451 (2013) 243.
[92] A.M. Thomas, A. Sujatha, G. Anilkumar, RSC Adv. 4
(2014) 21688.
[93] R. Ciriminna, V. Pandarus, G. Gingras, F. Beland,
P.D. Cara, M. Pagliaro, Chem. Eng. 1 (2013) 57.
[94] A. Elhage, A.E. Lanterna, J.C. Scaiano, ACS
Sustainable Chem. Eng. 6 (2018) 1717.
[95] D. Wang, S. Gao, Org. Chem. Front. 1 (2014) 556.
[96] A.A. Liori, I.K. Stamatopoulos, A.T. Papastavrou, A.
Pinaka, G.C. Vougioukalakis, Eur. J. Org. Chem.
2018 (2018) 6134.
[97] M.B. Thathagar, J. Beckers, G. Rothenberg, GreenChem. 6 (2004) 215.
[98] Y. Liang, Y.X. Xie, J.H. Li, J. Org. Chem. 71 (2006)
379.
[99] D.I. Sharapa, D.E. Doronkin, F. Studt, J.D.
Grunwaldt, S. Behrens, Adv. Mater. 31 (2019)
1807381.
[100] R. Hashemi Fath, S.J. Hoseini, New J. Chem. 41
(2017) 3392.
[101] R.G. Heidenreich, K. Kohler, J.G.E. Krauter, J.
Pietsch, Synlett. 7 (2002) 1118.
[102] M. Gholinejad, J. Ahmadi, Chem. Plus Chem. 80
(2015) 973.
[103] W. Xu, H. Sun, B. Yu, G. Zhang, W. Zhang, Z. Gao,
ACS Appl. Mater. Interfaces 6 (2014) 20261.
[104] C. Zhou, H. Wang, F. Peng, J. Liang, H. Yu, J. Yang,
Langmuir 25 (2009) 7711.
[105] S.K. Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal,
Appl. Catal. A Gen. 268 (2004) 61.
[106] S. Dutta, S. Sarkar, C. Ray, A. Roy, R. Sahoo, T. Pal,
ACS Appl. Mater. Interfaces 6 (2014) 9134.
[107] N. Pradhan, A. Pal, T. Pal, Langmuir 17 (2001) 1800.
[108] S. Lebaschi, M. Hekmati, H. Veisi, J. Colloid
Interface Sci. 485 (2017) 223.
[109] M. Nasrollahzadeh, S.M. Sajadi, A. RostamiVartooni, M. Bagherzadeh, J. Colloid Interface Sci.
448 (2015) 106.
[110] Q. Liu, Y.R. Xu, A.J. Wang, J.J. Feng, RSC Adv. 5
(2015) 96028.
[111] Y.H. Shih, C.P. Tso, L.Y. Tung, J. Environ. Eng.
Manage. 20 (2010) 137.
[112] A. Bhankhar, M. Giri, K. Yadav, N. Jaggi, Indian J.
Phys. 88 (2014) 1191.
[113] N. Aramesh, S.J. Hoseini, H.R. Shahsavari, S.M.
Nabavizadeh, M. Bahrami, M.R. Halvagar, E. De
Giglio, M. Latronico, P. Mastrorilli, Inorg. Chem. 59
(2020) 10688.