Removal of Bisphenol-A by NaP Zeolite/Hydroxyapatite Composite: Adsorption Experiments and Modeling by Artificial Neural Networks

Document Type: Research Paper

Authors

Department of chemistry, Arak University

10.22036/icr.2020.233634.1068

Abstract

In this paper, we have reported removal of Bisphenol A (BPA) by Hydroxyapatite/NaP zeolite (HAp: Zeolite ) nanocomposite which synthesized in previous our work and characterized by using different methods such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, Energy Dispersive X-ray analysis, surface area, and thermogravimetric analysis. To investigate the purification performance for removal BPA batch experiments were used. The results showed that the removal capacity could reach an equilibrium value of 11.125 mg/g in the initial BPA concentration of 50 mg/L. Some parameters such as initial concentration, pH, contact time, adsorbent dosage, and the temperature were studied that result shows this nanocomposite have high capacity for adsorption of BPA. The kinetic study presented that it agreed well with the pseudo-second-order model (R2= 0.994). Furthermore, thermodynamics studies were carried out, and result showed an exothermic condition for adsorption process. An artificial neural networks (ANNs) model was developed to predict the performance removal process based on experimental information which shows an association between the predicted results of the designed ANN model and experimental data. Results showed that the neural network model predicted values are found in close agreement with the batch experiment result with a correlation coefficient (R2) about 0.99051 and mean squared error 0.005938.

Keywords

[1] D. P. Mohapatra, S. K. Brar, R. D. Tyagi, R. Y, Chemosphere, 78 (2010) 923.

[2] H. S. Chang, K. H. Choo, B. Lee, S. J. Choi, J. Hazard. Mater. 172 (2009) 1.

[3] T. Suzuki, Y. Nakagawa, I. Takano, K. Yaguchi, K. Yasuda, Environ. Sci. Thecnol. 38 (2004) 2389.

[4] J. Q. Jiang, Q. Yin, J. L. Zhou, P. Pearce, Chemosphere. 61 (2005) 544.

[5] A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, D. Feldman, Endocrinology. 132 (1993) 2279.

[6] H. C. Alexander, D. C. Dill, L. W. Smith, P. D. Guiney, P. B. Dorn, Environ Toxicol. Chem. 7 (1988) 19.

[7] C. A. Staples, P. B. Dorn, G. M. Klecka, S. T. O’Block, L. R. Hariis, Chemosphere 36 (1998) 2149.

[8] A. Goodson, W. Summerfield, I. Cooper, Food Addit. Contamn. 19 (2002) 796.

[9] L. Guerra, SDLP, 6 (2006) 54.

[10] T. Yamamoto, A. Yasuhara, H. Shiraishi, O. Nakasugi, Chemosphere. 42 (2001) 415.

[11] G. Liu, J. Ma, X. Li, Q. Qin, J. Hazard. Mater. 164 (2009) 1275.

[12] Ministry of Health, labour and welfare of japan, “Exposure and behavior researches of endocrine disrupting chemicals in tap water (2000).

[13] F.R. Jiao, X.J. Sun, Z.T. Pang, Chem.Ind, 26 (2008) 21.

[14] B. Pan, D.H. Lin, H. Mashayekhi, B.S. Xing, Environ. Sci. Technol. 42 (2008) 5480.

[15] J.H. Chen, X. Huang, D.J. Lee, Process Biochem. 43 (2008) 451.

[16] Y. Wang, Sh. Jin, Q. Wang, G. Lu, J. Jiang, D. Zhu, J Chromatogr A. 1291 (2013) 27.

[17] V.M. Mboula, V. Héquet, Y. Andrès, L.M. Pastrana-Martínez, J.M. DoñaRodríguez, A.M.T. Silva, P. Falaras, Water Res. 47 (2013) 3997.

[18] Y. Huang, D. Dong, J. Yao, L. He, J. Ho, Ch.Ch. Kong, A.J. Hill, H. Wang, J. Chem matter. 22 (2010) 527.

[19] J-H. Dong; Y-S. Lin, Ind. Eng. Chem. Res. 37 (1998) 2404.

[20] D. Zhang, H. luo, L. Zheng, K. Wang, H. Li, Y. Wang, H. Feng, J. Hazard. mater. 241-242 (2012) 418.

[21] M. Zendehdel, B. shoushtari-yeganeh, G. Cruciani, JICS. 13 (2016) 1915.

[22] M. Khatamian, B. Divband, A. Jodaei, Mater Chem Phys. 134 (2012) 31.

[23] A. Aleboyeh, M.B. Kasiri, M.E. Olya, H. Aleboyeh, Dyes Pigm. 77(2008) 288.

[24] G.R. Shetty, S. Chellam, J. Membrane Sci. 217 (2003) 69.

[25] J.C. Patra, G. Panda, R.N. Pal, B.N. Chatterjee, Journal of the CSI. 27 (1997) 34.

[26] M. Zendehdel, B. Shoshtari-Yeganeh, H. Khanmohamadi, G. Cruciani, Process Saf Environ Prot. 109 (2017) 172.

[27] A.H. Alwashˏ A.Z. Abdullahˏ N. Ismail, J. Hazard. Mater. 233-234 (2012) 184.

[28] M. Abecassis.Wolfovichˏ R. Jothiramalingamˏ M.V. Landauˏ M. Herskowitzˏ B. Viswanathan, T.K. Varadarajan, Appl. Catal. B: Environ. 59 (2005) 91.

[29] S. Hansen, U. Hakansson, L. Faelth, Acta crystallogr C Struct Chem. 46 (1990) 1361.

[30] M. Sadeghi, S.L. Sharifi, H. Hatami, Int. J.Nano Dimens. 5 (2014) 91.

[31] Y. Zhan, J. Lin, J. Li, Environ SciPollut Res. 20 (2013) 2512.

[32] Y. Wangˏ S. Zhangˏ K. Weiˏ N. Zhaoˏ J. Chenˏ X. Mater Lett. 60 (2006) 1484.

[33] Z. Huo, XXu, Z. Lü, J. Song, M. He, Z. Li, Q. Wang, L. Yan, Microporous Mesoporous Mater. 158 (2012) 137.

[34] S. Singh, S.B. Jonnalagadda, Bull. Chem. Soc. Ethiopˏ 27 (2013) 57.

[35] M. Zendehdelˏ H. Khanmohamadiˏ M. Mokhtari, J. Chin. Chem. Soc. 57 (2010) 205.

[36] M.A. Bautista-Toledo, J. Ferro-García, C. Rivera-Utrilla, F.J. Moreno-Castilla, V.Fernández, Environ. Sci. Technol. 39 (2005) 6246.

[37] G. Liu, J. Ma, X. Li, Q. Qin, J. Hazard. Mater. 164 (2009) 1275.

[38] W. Janusz, E. Skwarek, The study of properties of hydroxyapatite/electrolyte interface, 2 (2009). DOI: 10.2478/v10063-008-0003-x.

[39] G.R. Wiese, R.O. James, D.E. Yates, T.W. Healy, Electrochemistry of the colloid-water interface. In Electrochemistry of Colloid-Water Interface; Bockris J. O’M. Ed.; Int. Review Sci. Phys. Chem. Series 2; Butterworths: London; 6, 53 (1976).

[40] J. Lyklema, Fundamentals of Interface and Colloid Science. Academic Press London, 1995, 3.2–3.232. b) Fundamental the Electrical Double Layers in Colloidal Systems. In Colloidal Dispersions, Goodwin J. W. Ed., Special Publication No 43; Royal Soc. Chem.: London, 47 (1981).

[41] W.T. Tsai, Ch.W. Lai, T.Y. Su, J. Hazard. Mater. B134 (2006) 169.

[42] Q. Sui, J. Huang, Y. Liu, X. Chang, G. Ji, Sh. Deng, T. Xie, G. Yu, J  Environ Sci. 23 (2011) 177.

[43] M. Islam, R.-K. Patel, J. Hazard. Mater. 143 (2007) 303.

[44] L. Tang, Zh. Xie, G. Zeng, H. Dong, Ch. Fan, Y. Zhou, J. Wang, Y. Deng, J. Wang, X. Wei, RSC Adv, 2016, DOI: 10.1039/C5RA27710H.

[45] Y. S. Ho, J. F. Porter, G. Mckay, Water Air Soil Pollut. 141 (2002) 1.

[46] M.M. Dávila-Jiménez, M.P. Elizalde-González, and A.A. Peláez-Cid, Colloid Surface A. 254 (2005) 107–114.

[47] H. Chen, J. Zhao, J. Wu, G. Dai, J. Hazard. Mater. 192 (2011) 246.

[48] W.T. Tsai, C.W. Lai, and T.Y. Su, J. Hazard. Mater. 134 (2006) 169.

[49] Z.M. Lazim, T. Hadibarata, M.H. Puteh, and Z. Yusop, Water Air Soil Pollut. 226 (2015) 1.

[50] G. Zeng, C. Zhang, G. Huang, J. Yu and Q. Wang, Chemosphere. 65(2006) 1490.

[51] C. Namasivayam, S. Sumithra, Clean Technol. Environ. Policy. 9 (2007) 215.

[52] F. Despagne, D. Massart, Analyst, 123 (1998) 157R.

[53] Y.M. Slokar, J. Zupan, A.M.L. Marechal, Dyes Pigm. 42 (1999) 123.

[54] H.U. Ozturk, Discharge predictions using ANN in sloping rectangular channels with free overfall, MSc Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University (METU), Ankara, 2005.


Volume 4, Issue 1
Summer and Autumn 2020
Pages 103-122
  • Receive Date: 01 June 2020
  • Revise Date: 22 July 2020
  • Accept Date: 23 July 2020