Quantum Mechanical Calculations of Photovoltaic and Photoelectronic Properties of Oligoselenophene/Fullerene BHJ Solar Cells

Document Type : Research Paper

Authors

Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

To model the active layer in the hetero-junction solar cells, the C60, C70, PC60BM, PCBDAN fullerenes as acceptor, and (OS)n=1) oligoselenophenes as donor were considered. The (OS)n=14/C60, (OS)n=14/C70, (OS)n=14/PC60BM, and (OS)n=14/PCBDAN blends as a model of the active layer in the BHJ solar cell were chosen, and the optoelectronic properties were studied. The calculated efficiency of these complexes based on the Scharber diagram is 8%, 8.2%, 9.3%, and 9.7%, respectively. These results indicate that the (OS)n=14/PCBDAN blend is a favorable candidate as solar cell than that of the other blends. In order to investigate the effect of the chain length of oligomers on the solar cell properties, the optoelectronic properties of (OS)n=12/C60 blend was also studied. The electronic and optical properties and the calculated efficiency values of (OS)n=12/C60 and (OS)n=14/C60 (7.7% and 8% respectively) show that the (OS)n=14/C60 complex is more suitable candidate than the (OS)n=12/C60 complex for modeling the active layer in the BHJ solar cells.

Keywords


[1] Y. Wang, W. Wei, X. Liu , Y. Gu , Sol. Energy Mater. Sol. Cells, 98 (2012) 129–145.
[2] Y. Li, T. Pullerits, M. Zhao, M. Sun, J. Phys. Chem. C, 115 (2011) 21865–21873.
[3] E. Bundgaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells, 91 (2007) 954–985.
[4] S. Xiao, A.C. Stuart, S. Liu, W. You, Appl. Mater. Interfaces, 1 (2009) 1613–1621.
[5] S. Gunes, D. Baran, G. Gunbas, A. Durmus, A. Fuchsbauer, N.S. Sariciftci, L. Toppare, Polym. Chem., 1 (2010) 1245–1251.
[6] T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds, Handbook of Conducting Polymers, ed., Marcel Dekker, Inc, New York (1998).
[7] C.N. Hoth, P. Schilinsky, S.A. Choulis, C.J. Brabec, Nano Lett., 8 (2008) 2806–2813.
[8] S. Tang, J. Zhang, J. Phys. Chem. A, 115 (2011) 5184–5191.
[9] C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Saricifci, Organic Photovoltaics: Concepts and Realizations, Springer-Verlag Berlin Heidelberg, New York (2003).
[10]     R.H. Bube, Photovoltaic Materials, Imperial College Press, London (1998).
[11]     Y. Yi, V. Coropceanu, J.L. Bredas, J. Am. Chem. Soc., 131 (2009) 15777–15783.
[12]     B.C. Thompson, J.M.J. Frchet, Angew. Chem. Int. Ed., 47 (2008) 58–77.
[13]     W. C. H. Choy (Ed.), Organic Solar Cells, Green Energy and Technology, Springer-Verlag London (2013).
[14]     X. Song, W. Hua, Y. Ma, C. Wang, Y. Luo, J. Phys. Chem. C, 116 (2012) 23938−23944.
[15]     C. Risko, M.D. McGehee, J.-L. Bredas, Chem. Sci., 2 (2011) 1200–1218.
[16]     J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Nature, 376 (1995) 498–500.
[17]     G. Dennler, M.C. Scharber, C.J. Brabec, Adv. Mater., 21 (2009) 1323–1338.
[18]     G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A. J. Heeger, Science, 270 (1995) 1789–1791.
[19]     C. Leng, H. Qin, Y. Si, Y. Zhao, J. Phys. Chem. C, 118 (2014) 1843−1855.
[20]     J.W. Chen, Y. Cao, Acc. Chem. Res., 42 (2009) 1709−1718.
[21]     J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M.C. Dante, A.J. Heeger, Science, 317 (2007) 222−225.
[22]     Y. Liang, Z. Xu, J. Xia, S.-T. Tsa, T. Wu, G. Li, C. Ray, L. Yu, Adv. Mater., 22 (2010) 22,             E135–E138.
[23]     C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Adv. Funct. Mater., 11 (2001) 15−26.
[24]     Y. He, Y. Li, Phys. Chem. Chem. Phys., 13 (2011) 1970− 1983.
[25]     Z.-L. Guan, J.B. Kim, H. Wang, C. Jaye, D.A. Fischer, Y.-L. Loo, A. Kahn, Org. Electron., 11 (2010) 1779−1785.
[26]     N.-K. Persson, M. Sun, P. Kjellberg, T. Pullerits, O. Inganas, J. Chem. Phys., 123 (2005) 204718−9.
[27] Z. Mahdavifar, H. Salmanizadeh, J. Photochem. Photobio. A: Chem., 310 (2015) 9-25.
[28]     X. Gong, M. Tong, Y. Xia, W. Cai, J. Moon, Y. Cao, G. Yu, C. Shieh, B. Nilsson, A.J. Heeger, Science,325 (2009) 1665–1667.
[29]     M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, A.J.  Heeger, C. Waldauf, C.J. Brabec, J. Adv. Mater., 18 (2006) 789–794.
[30]     C. Winder, G. Matt, J.C. Hummelen, R.A.J. Janssen, N.S. Sariciftci, C. Brabec, Thin Solid Films, 373 (2002) 403–404.
[31]     O.M. Sarhangi, S.M. Hashemianzadeh, M.M. Waskasi, A.P. Harzandi, J. Photochem. Photobiol. A, 225 (2011) 95–105.
[32]     E.E. Havinga, W. ten Hoeve, H. Wynberg, Synth. Met., 299 (1993) 55–57.
[33]     M.C.R. Delgado, V. Hernandez, J.T.L. Navarrete, S. Tanaka, Y. Yamashita, J. Phys. Chem. B, 108 (2004) 2516–2526.
[34]     L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Appl. Phys. Lett., 88 (2006) 093511-3.
[35]     A. Ostovan, Z. Mahdavifar, M. Bamdad, Polymer, 126 (2017) 162-176.
[36]     Z. Mahdavifar, S. Tajdinan, E. Shakerzadeh, Appl. Organomet. Chem., 33 (2019) e4962.
[37]  A. Patra, M. Bendikov, S. Chand, Acc. Chem. Res. 4 (2014) 1465-1474.
[38]  A. Patra, M. Bendikov, J. Mater. Chem., 20 (2010) 422-433.
[39]  O. Gidron, Y. Diskin-Posner and M. Bendikov, J. Am. Chem. Soc., 132 (2010) 2148-2150.
[40]  A. M. Ballantyne, L. Chen, J. Nelson, D. D. C. Bradley, Y. Astuti, A. Maurano, C. G. Shuttle, J. R. Durrant, M. Heeney, W. Duffy and I. McCulloch, Adv. Mater., 19 (2007) 4544-4547.
[41]  (a) A. A. Jahnke, B. Djukic, T. M. McCormick, E. B. Domingo, C. Hellmann, Y. Lee, D. S. Seferos, J. Am. Chem. Soc., 135 (2013) 951-954.
[42] A. Botta, C. Costabile, V. Venditto, S. Pragliola, R. Liguori, A. Rubino, D. Alberga, M. Savarese, C. Adamo, J. Polym. Sci., A: Polym. Chem., 55 (2018) 242-251.
[43]  R. Kroon, A. Melianas, W. Zhuang, J. Bergqvist, A.D. Z Mendaza, T. T. Steckler, L. Yu, S. J. Bradley, C. Musumeci, D. Gedefaw, T. Nann, A. Amassian, C. Müller, O. Inganäs, M.R. Andersson, Polym. Chem., 6 (2015) 7402-7409.
[44]  K. A. Mazzio, M. Yuan, K. Okamoto and C. K. Luscombe, ACS Appl. Mater. Interfaces, 3 (2011) 271-278.
[45]     M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).
[46]     S. S. Zade, M. Bendikov, Org. Lett., 8 (2006) 5243-5246.
[47]     R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett., 256 (1996) 454-464.
[48]     R. E. Stratmann, G. E. Scuseria, M .J. Frisch, J. Chem. Phys., 109 (1998) 8218-8224.
[49]     M. C. Scharber, N. S. Sariciftci, Prog. Polym. Sci., 38 (2013) 1929– 1940.