Structure and Chromotropic Properties of 2-Picolylamine-Ni(II) Complex

Document Type : Research Paper

Authors

Department of Chemistry, University of Mazandaran, Babolsar, Iran

Abstract

A symmetric complex [NiL2(H2O)2]Cl2, where L = 2-picolylamine was synthesized and characterized by spectroscopic and structural methods. Single crystal X-ray studies reveal that the Ni(II) center located in a pseudo-octahedral N4O2 environment with bidentate ligands L positioned in basal and two water molecules in the apical position. The complex is solvatochromic, ionochromic and thermochromic. The observed positive solvatochromism in polar solvents is due to the substitution of water molecules by the solvent. The complex demonstrated distinct ionochromism towards cyanide and bromide anions in the presence of other halides and pseudo-halide anions and can be served as a ‘‘naked-eye’’ indicator for the qualitative detection of these anions. The compound showed reversible thermochromism in solid-state from blue to green due to dehydration and hydration process.

Keywords


 [1] H. Golchoubian, E. Rezaee, G. Bruno, H.A. Rudbari  Inorg. Chim. Acta 366 (2011) 290.
 [2] H. Golchoubian, G. Moayyedi, H. Fazilati   J. Spectrochim. Acta A, 85 (2012) 25.
 [3] H. Golchoubian, E. Rezaee, Polyhedron 55 (2013) 162.
 [4] H. Golchoubian, A. Heidarian, E. Rezaee, F. Nicolò  Days & Pigments 104 (2014) 175.
 [5] H. Golchoubian, G. Moayyedi, N. Reisi Spect. Chim. A 138 (2015) 913. 
 [6] H. Golchoubian, H. Ghorbanpour, E. Rezaee, Inorg. Chim. Acta,442 (2016) 30.
 [7] H. Golchoubian, R. Samimi, Polyhedron 128 (2017) 68.
 [8] H. Golchoubian, S. Arabahmadi, Inorg. Chem. Res. 1 (2017) 191.  
 [9] R. Nazari, H. Golchoubian, G. Bruno,  J. Iran. Chem. Soc. 16 (2019) 1041.
 [10]  M. Ghoreishi Amiri, H. Golchoubian, J. Mol. Struct. 1165 (2018) 196.
 [11] O. Sato, Acc. Chem. Res. 36 (2003) 692.
 [12] K. Ding, Z. Yang, Y.L. Zhang, J.Z. Xu, Cell. Bio. Int. 37 (2013) 977.
 [13] O. Sato, S. Hayami, Y. Einaga, Z.Z. Gu, Bull. Chem. Soc. Jpn. 76 (2003) 443.
 [14] K.S. Schanze, R.H. Schmehl, J. Chem. Educ. 74 (1997) 633.
 [15] G.J. Halder, C.J. Kepret, B. Mourabaki, K.S. Murray, J.D. Cashion. Science 298 (2002) 1762.
 [16] M. Gou, G. Guo, J.A. Zhang, K. Men, J. Song, F. Luo, X. Zhao, Z. Qian, Y.Q. Wei. Sensor Actuat. B-Chem. 150 (2010) 406.
 [17] J.L. Meinershagen, T. Bein, Adv. Mater. 13 (2001) 208.
 [18] K. Sone, Y. Fukuda, Ions and Molecules in Solution, Elsevier, Amsterdam, 1983.
 [19] Y. Fukuda, Inorganic Chromotropism, Springer, Berlin, 2007.
 [20] SMART, SAINT, Version 5.060. and Version 6.02. Madison and Wisconsin, WI: Bruker AXS Inc. 2007.
 [21] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. DeCaro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Cryst. 38 (2005) 381.
 [22] G.M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement, Germany, 2008.
 [23] SHELXT LN, Version 5.10. Madison, WI: Bruker Analytical X-ray Inc.; 2008.
 [24]  W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
 [25] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier, Amsterdam, 1984.
 [26] 18. E. Sacher, Spectrochim. Acta, A43 (1987) 747.
 [27]  J. Tomkinson, Spectrochim. Acta, A48 (1992) 329.
 [28]  A.N. Mansour, C.A. Melendres, J. Phys. Chem. A 102 (1998) 65.
 [29] V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum Press, New York, 1978.
 [30] M.A. Malati, Experimental inorganic/physical chemistry: An investigative, integrated approach to practical project work,Albion, Horwood, 1999.