Effect of Temperature and Reaction Time on the Morphology and Phase Evolution of Self-assembled Cu7.2S4 Nanospheres Obtained from Nanoparticles and Nanorods Synthesized by Solvothermal Method

Document Type: Research Paper

Authors

Department of chemistry, Isfahan University of Technology, Isfahan, Iran

Abstract

In this research, self-assembled copper sulfide nanospheres were synthesized by the solvothermal method and the effects of reaction parameters, including reaction time and reaction temperature on the morphology and phase evolution of copper sulfide nanostructures were investigated. For the identification of copper sulfide nanostructures, X-ray diffraction (XRD), infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and elemental analysis (EDX) were used. The results showed that the temperature of 200 °C for 24 h is sufficient for the formation of the pure hexagonal Cu7.2S4 phase. The Cu7.2S4 nanostructures have a spherical morphology that formed from the self-assembly of the nanoparticles. Finally, the photocatalyst efficiency of Cu7.2S4 sphere was investigated.

Keywords

[1]      K.Mageshwari, S.Sawanta Mali, T. Hemalatha, R. Sathyamoorthy, and S.Pramod Patil. "Low temperature growth of CuS nanoparticles by reflux condensation method." Prog. Sol. State Chem. 39 (2011) 108-113.
[2]      A. Dasari, and G. Veerabhadram. "A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection." Mat. Today energy 9 (2018) 83-113.
[3]      S. Xiao-Ping, H. Zhao, H.Q Shu, H. Zhou, and A.-H. Yuan. "Self-assembly of CuS nanoflakes into flower-like microspheres: synthesis and characterization." J. Physics Chem. Solids 70 (2009) 422-427.
[4]      Z. C. Zhiguo, S. Wang, D. Si, and B.Geng. "Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route." J. alloys compds 492 (2010) L44-L49.
[5]      X. Jin-Zhong, S.Xu, J. Geng, G.-X. Li, and J.-J. Zhu. "The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-β-cyclodextrin as a template under sonication." Ultrason. sonochem. 13 (2006) 451-454.
[6]      R. Sana, A. Parveen, and A. Azam. "Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route." Perspec. Sci. 8 (2016) 632-635.
[7]      R. Liesbeth, B. Meester, F. de Lange, J. Schoonman, and A.Goossens. "Comparison of Cu x S films grown by atomic layer deposition and chemical vapor deposition." Chem. mat. 17 (2005) 2724-2728.
[8]      C. Lifei, Y. Shang, H. Liu, and Y. Hu. "Synthesis of CuS nanocrystal in cationic gemini surfactant W/O microemulsion." Mat. Design 31 (2010) 1661-1665.
[9]      F.Davar,  M. R. Loghman-Estarki, M. Salavati-Niasari, and M. Mazaheri. "Controllable synthesis of covellite nanoparticles via thermal decomposition method." J.Cluster Sci. 27 (2016) 593-602.
[10]    A. Peter, and N. L. Botha. "Synthesis and structural studies of copper sulfide nanocrystals." Res. physics 6 (2016) 581-589.
[11]    W. Huijie, Y. Li, and Q. Li. "Facile synthesis of CuS nanostructured flowers and their visible light photocatalytic properties." Appl. Phys. A 123 (2017) 196.
[12]    Y. Liu, Y. Z. Zhou, S. Zhang, W. Luo, and G. Zhang. "Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors." Appl. Surf. Sci. 442 (2018) 711-719.
[13]    C. Y. Cheng, J. B. Shi, C. Wu, C. J. Chen, Y. T. Lin, and P. F. Wu. "Fabrication and optical properties of CuS nanowires by sulfuring method." Mat. Lett. 62 (2008) 1421-1423.
[14]    Z.Biao, X. Guo, Y. Zhou, T. Su, C. Ma, and R. Zhang. "Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers." CrystEngComm 19 (2017) 2178-2186.
[15]    D. Patil, S.-H. Han, M. C. Rath, and V. J. Fulari. "Copper sulfide nanorods grown at room temperature for photovoltaic application." Mat.Lett. 90 (2013) 138-141.
[16]    T. Changhui, Y. Zhu, R.Lu, P.Xue, C. Bao, X.Liu, Z. Fei, and Y. Zhao. "Synthesis of copper sulfide nanotube in the hydrogel system." Mat. chem. phys. 91 (2005) 44-47.
[17]    S. Umair, R. A. Hussain, and A. Badshah. "Fabrication and applications of copper sulfide (CuS) nanostructures." J. solid state chem. 238 (2016) 25-40.
[18]    H.Yan, Y.Wang, W. Gao, Y. Wang, L. Jiao, H. Yuan, and S. Liu. "Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries." Powder Technol. 212 (2011) 64-68.
[19]    K. Rahul, A. Singh, A. Anshul, D.Mishra, and S. S. Amritphale. "Facile and controlled synthesis of copper sulfide nanostructures of varying morphology." J. Mat. Sci. Mat.   Electronics 28 (2017) 5597-5602.
[20]    C. Claudia, M. Ibanez, O. Dobrozhan, A.Singh, A. Cabot, and K. M. Ryan. "Compound copper chalcogenide nanocrystals." Chem. rev. 117 (2017) 5865-6109.
[21]    X.Wence, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, and A. Inoue. "Nanoporous CuS with excellent photocatalytic property." Scien. reports 5 (2015) 18125.
[22]    G.Wen, Y. Sun, M. Cai, Y. Zhao, W. Cao, Z.Liu, G.Cui, and B. Tang. "Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis." Nature comm.9 (2018) 1-10.
[23]    L. Chunbo, X. Zhang, F. Xu, Y. Yuan, H. Pei, Z. Sun, L. Li, and Z. Bao. "Engineering gold nanorod–copper sulfide heterostructures with enhanced photothermal conversion efficiency and photostability." Small 14 (2018) 1703077.
[24]    G. Mao, W. Dong, D. G. Kurth, and H. Mohwald, "Synthesis of copper sulfide nanorod arrays on molecular templates," Nano Lett., 4 (2004) 249–252.
[25]    L. Xin, J. Yu, and M. Jaroniec. "Hierarchical photocatalysts." Chem. Soc. Rev. 45 (2016) 2603-2636.
[26]    T. Natarajan, T.Sivakumar, K. Natarajan, H. C. Bajaj, and R.J. Tayade. "Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye." J. nanoparticle Res. 15 (2013) 1669.
[27]    R. Qadeer, Q.Riaz. "Adsorption behavior of ruthenium ions on activated charcoal from nirtic acid medium." Colloids and Surfaces A: Physicochem. Eng. Aspects 293 (2007) 217-223.
[28]    G.Mishra, and M. Tripathy. "A critical review of the treatments for decolourization of textile effluent." Colourage 40 (1993) 35-35.
[29]    D.Ayhan. "Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review." J. hazard. Mat. 167 (2009) 1-9.
[30]    L. Fei, J. Wu, Q.Qin, Z. Li, and X. Huang. "Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures." Powder Technol. 198 (2010) 267-274.
[31]    G. Amrita, and A.Mondal. "A simple electrochemical route to deposit Cu7S4 thin films and their photocatalytic properties." Appl.Sur. Sc. 328 (2015) 63-70.
[32]    Z. Y.Qiao, B.P Zhang, Z.H. Ge, L.F.Zhu, and Y. Li. "Preparation by solvothermal synthesis, growth mechanism, and photocatalytic performance of CuS nanopowders." Europ. J. Inorg. Chem.  2014 (2014) 2368-2375.
[33]    A. Dasari, M. Venkatesham, A. S. Kumari, G. B.Reddy, D. Ramakrishna, and G. Veerabhadram. "Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles." J. Exp. Nanosci. 11 (2016) 418-432.
[34]    X. Ya-Jun, Y. Shen, X.S. Hu, and S.N. Chen. "Preparation and Visible-Light Driven Photocatalytic Properties of CuS/Reduced Graphene Oxide Composites." J. Nanosci. Nanotechnol. 18 (2018) 1696-1704.
[35]    Z. Lijuan, L.Zhou, C. Sun, Y. Gu, W. Wen, and X. Fang. "Rose-like CuS microflowers and their enhanced visible-light photocatalytic performance." CrystEngComm 20 (2018): 6529-6537.
[36]    H.Xiao-Sai, Y.Shen, L.H.Xu, L. Wang, L. Lu, and Y. Zhang. "Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications." Appl. Surf.Sci. 385 (2016) 162-170.
[37]    L.Fei, T.Kong, W. Bi, D. Li, Z. Li, and X. Huang. "Synthesis and optical properties of CuS nanoplate-based architectures by a solvothermal method." Appl. Surf. Sci.255 (2009) 6285-6289.
[38]    X. Hu, X.Sai, Y. Shen, Y.Zhang, and J. Nie. "Preparation of flower-like CuS/reduced graphene oxide (RGO) photocatalysts for enhanced photocatalytic activity." J.Physics Chem. Solids 103 (2017) 201-208.
[39]    Z. Y.Cai, J.Y. Tang, G. L. Wang, M.Zhang, and X. Hu. "Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor." J. Crys. Growth 294 (2006) 278-282.
[40]    A. Khorshidi, A. F. Shojaei, and M.Mojallali Foumani. "Cu (acac) 2–PVA composite nanofibers in catalysis of Michael addition of carbon nucleophiles to α, β-unsaturated carbonyl compounds." Iranian Polymer J.26 (2017) 481-487.
[41]    S. Jian, G. Yu, L. Liu, Z. Li, Q. Kan, Q. Huo, and J.Guan. "Core–shell structured Fe 3 O 4@ SiO 2 supported cobalt (ii) or copper (ii) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene." Catalysis Sci.Technol.4, (2014) 1246-1252.
[42]    Y.Moreno, R. Arrue, R. Saavedra, J. Y. Pivan, O. Pena, and T. Roisnell. "Magnetic and structural study of unsolvated [cu (acac) 2],(acac= acetylacetonate)." J. Chilean Chem. Soc. 58(2013) 2122-2124.
[43]    W. A. P. J.,Premaratne, W. M. G. I. Priyadarshana, S. H. P. Gunawardena, and A. A. P. De Alwis. "Synthesis of nanosilica from paddy husk ash and their surface functionalization." J.Sci. Univ. Kelaniya Sri Lanka 8 (2014) 11-20.
[44]  G.Cao,, and Y. Wang. "Nanostructures and nanomaterials: synthesis." Properties and Applications,  Imperial College Press, 2004.

Volume 4, Issue 1
Summer and Autumn 2020
Pages 66-75
  • Receive Date: 02 June 2020
  • Revise Date: 02 July 2020
  • Accept Date: 03 July 2020