Palladium(II) Phosphine-Ylide Complexes as Highly Efficient Homogeneous Pre-catalysts for the Ullmann Homocoupling Reaction of Aryl Halides

Document Type : Research Paper

Authors

Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran

Abstract

A highly efficient Ullmann homocoupling reaction of aryl halides using palladium (II) phosphine-ylide complexes as homogenous pre-catalysts under aerobic conditions has been developed without the need for any chemical co‐reducing agents. The procedure is relatively mild and appears to have broad applicability, being useful for the homocoupling of both electron-deficient and electron-rich aryl halides and also homocoupling of phenylboronic acid and phenylacetylene.

Keywords


[1] F. Ullmann, J. Bielecki, Chem. Ber. 34 (1901) 2174.
[2] (a) S. Venkatraman, C.J. Li, Org. Lett. 1 (1999) 1133; (b) S. Venkatraman, C.J. Li, Tetrahedron Lett. 41 (2000) 4831; (c) J.H. Li, Y.X. Xie, D.L. Yin, J. Org. Chem. 68 (2003) 9867.
[3] S. Mukhopadhyay, G. Rothenberg, H. Wiener, Y. Sasson, Tetrahedron 55 (1999) 14763.
[4] (a) S. Mukhopadhyay, G. Rothenberg, D. Gitis, H. Wiener, Y. Sasson, J. Chem. Soc., Perkin Trans. 2 (1999) 2481; (b) S. Mukhopadhyay, G. Rothenberg, N. Qafisheh, Y. Sasson, Tetrahedron Lett. 42 (2001) 6117.
[5] D.D. Hennings, T. Iwama, V.H. Rawal, Org. Lett. 1 (1999) 1205.
[6] (a) J. Hassan, V. Penalva, L. Lavenot, C. Gozzi, M. Lemaire, Tetrahedron 54 (1998) 13793; (b) J. Hassan, C. Gozzi, M. Lemaire, Surface Chemistry and Catalysis 3 (2000) 517; (c) L. Wang, Y.H. Zhang, L.F. Liu, Y.G. Wang, J. Org. Chem. 71 (2006) 1284.
[7] H. Amii, M. Kohda, M. Seo, K. Uneyama, Chem. Commun. (2003) 1752.
[8] M. Kuroboshi, Y. Waki, H. Tanaka, J. Org. Chem. 68 (2003) 3938.
[9] Y.M. Chang, S.H. Lee, M.Y. Cho, B.W. Yoo, H.J. Rhee, S.H. Lee, C.M. Yoon, Synth. Commun. 35 (2005) 1851.
[10] K. Kikukawa, T. Yamane, M. Tagaki, T. Matsuda, J. Chem. Soc., Chem. Commun. (1972) 695.
[11] D.L. Boger, J. Goldberg, C.M. Andersson, J. Org. Chem. 64 (1999) 2422.
[12] N. Shezad, A.A. Clifford, C.M. Rayner, Green Chem. 4 (2002) 64.
[13] N. Ma, Zh. Duan, Y. Wu, J. Organomet. Chem. 691 (2006) 5697.
[14] S.B. Park, H. Alper, Tetrahedron Lett. 45 (2004) 5515.
[15] Sh. Nadri, E. Azadi, A. Ataei, M. Joshaghani, E. Rafiee, J. Organomet. Chem. 696 (2011) 2966.
[16] H. Firouzabadi, N. Iranpoor, F. Kazemi, J. Mol. Catal. A: Chem. 348 (2011) 94.
[17] L. Wang, Y. Zhang, L. Liu, Y. Wang, J. Org. Chem. 71 (2006) 1284.
[18] (a) V. Penalva, J. Hassan, L. Lavenot, C. Gozzi, M. Lemaire, Tetrahedron Lett. 39 (1998) 2559; (b) D. Albanese, D. Landini, M. Penso, S. Petricci, Synlett 1999 (1999) 199.
[19] B. Karimi, H. Behzadnia, H. Vali, Chem. Cat. Chem. 6 (2014) 745.
[20] V. RN. Singh, Tetrahedron Lett. 47 (2006) 7625.
[21] L. Shao, Y. Du, M. Zeng, X. Li, W. Shen, S. Zuo, Y. Lu, X. M. Zhang, C. Qi, Appl. Organometall. Chem. 24 (2010) 421.
[22] J. Moon, H. Nam, J. Ju, M. Jeong, S. Lee, Chem. Lett. 36 (2007) 1432.
[23] N. Iranpoor, H. Firouzabadi, Y. Ahmadi, Eur. J. Org. Chem. 2012 (2012) 305.
[24] B. Karimi, M. Vafaeezadeh, P. F. Akhavan, Chem. Cat. Chem. 7 (2015) 2248.
[25] J. Buter, D. Heijnen, C. Vila, V. Hornillos, E. Otten, M. Giannerini, A. J. Minnaard, B.L. Feringa, Angew. Chem. 128 (2016) 3684.
[26] H. S. He, C. Zhang, C. K. Ng, P. H. Toy, Tetrahedron 61 (2005) 12053.
[27] A. R. Hajipour, K. Karami, G. Tavakoli, Appl. Organometall. Chem. 25 (2011) 567.
[28] Y. Huang, L. Liu, W. Feng, Chem. Select 1 (2016) 630.
[29] J. Wang, Y. Li, P. Li, G. Song, Monatsh. Chem. 144 (2013) 1159.
[30] L. Chen, Z. Gao, Y. Li, Catal. Today 245 (2015) 122.
[31] S. J. Sabounchei, S. Samiee, D. Nematollahi, A. Naghipour, D. Morales-Morales, Inorg. Chim. Acta 363 (2010) 3973.
[32] G.W. Kabalka, L. Wang, R.M. Pagni, C.M. Hair, V. Namboodiri, Synthesis (2003) 217.
[33] S. Chen, J. Zhang, Y.H. Li, J. Wen, S.Q. Bian, X.Q. Yu, Tetrahedron Lett. 50 (2009) 6795.
[34] D.J. Koza, E. Carita, Synthesis (2002) 2183.
[35] A.M. Echavarren, J.K. Stille, J. Am. Chem. Soc. 109 (1987) 5478.
[36] G. Lunn, J. Org. Chem. 57 (1992) 6317.
[37] K. Yin, C. Li, J. Li, X. Jia, Appl. Organomet. Chem. 25 (2011) 16.
[38] (a) N. Iranpoor, H. Firouzabadi, R. Azadi, J. Organomet. Chem. 693 (2008) 2469; (b) Sarvestani, M.; Azadi, R. Appl. Organometal. Chem., 31 (2017) e3667; (c) S. Samiee, A. Shiralinia, E. Hoveizi, R. W. Gable, J. Organometall. Chem. 900 (2019) 120927.
[39] (a) S. J. Sabounchei, M. Ahmadi, Z. Nasri, E. Shams, M. Panahimehr, Tetrahedron Lett. 54 (2013) 4656; (b) S. J. Sabounchei, M. Panahimehr, M. Ahmadi, Z. Nasri, H.R. Khavasi, J. of Organomet. Chem. 723 (2013) 207; (c) S. J. Sabounchei, M. Ahmadi, Z. Nasri, E. Shams, M. Panahimehr, Tetrahedron Lett. 54 (2013) 4656.
[40] N.R. Champness, P.F. Kelly, W. Levason, G. Reid, A.M.Z. Slawin, D. Williams, Inorg. Chem. 34 (1995) 651.
[41] A.J. Downard, A.M. Bond, A.J. Clayton, L.R. Hanton, D.A. McMorran, Inorg. Chem. 35 (1996) 7684.