One-dimensional Uranium(VI) Coordination Polymer Complex Containing Dimethyl and Trimethyl Phosphate Ligands: Synthesis, Spectroscopic Characterization, Thermal Analyses, and Crystal Structure

Document Type: Research Paper

Authors

1 Department of Chemistry, Farhangian University, Tehran, Iran

2 Faculty of Chemistry, Kharazmi University, Tehran, Iran

Abstract

A new one-dimensional uranium(VI) coordination polymer, [UO2(μ-DMP)2(TMP)]n (1) (DMP is dimethyl phosphate and TMP is trimethyl phosphate), was prepared from the reaction of UO2(NO3)2.6H2O and TMP in in THF (THF is tetrahydrofuran) as a solvent. Suitable crystals of this complex for crystal structure determination were obtained by slow evaporation of the produced yellow solution at room temperature. Complex 1 was characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The X-ray structural analysis indicated that the uranium(VI) is seven-coordinated in a pentagonal bipyramidal configuration by two axial uranyl oxygens, four bridged dimethyl phosphate and monodentate trimethyl phosphate ligands. Also, the thermal stability of 1 was studied by thermogravimetric and differential thermal analyses.

Keywords

[1] G. Szigethy, K. N. Raymond, J. Am. Chem. Soc. 133 (2011) 7942.
[2] D. Hagberg, G.Karlstrom,  B. O. Roos, L. Gagliardi,  J. Am. Chem. Soc. 127               (2005) 14250.
[3] P. Thuéry,  B. Masci, Cryst. Growth Des. 8 (2008) 3430.
[4] B. E. Cowie, J. M. Purkis, J. Austin, J. B. Love, P. L. Arnold, Chem. Rev. 119            (2019) 10595.
[5] M. Azam, G. Velmurugan, S. M. Wabaidur, A. Trzesowska-Kruszynska, R.                 Kruszynski, S. I. Al-Resayes, Z. A. Al-Othman, P. Venuvanalingam, Nature, 6            (2016) 32898.
[6] Q. L. Guana, X. Gaoa, J. Liuc, W. J. Weic, Y. H. Xing, F. Y. Baia, J. Coord.                Chem. 69 (2016) 1026.
[7] M. Sundararajan, A. J. Campbell, I.H. Hillier, J. Phys. Chem. A112 (2008) 4451.
[8] G. F. Vettese, K. Morris, L. S. Natrajan, S. Shaw, T. Vitova, J. Galanzew, D. L.          Jones, J. R. Lloyd. Environmental Science & Technology, 54, (2020) 2268.
[9] S. Tsushima, Inorg. Chem. 48 (2009) 4856.
[10] T. Mashita, S. Tsushima, K. Takao, ACS Omega, 4 (2019) 7194-7199.
[11] R. Nagaishi, Y. Katsumura, K. Ishigure, H. Aoyagi, Z. Yoshida, T. Kimura, Y.            Kato, J. Photochem. Photobiol. A146 (2002) 157.
[12] M. Azam, S. I. Al-Resayes, A. Trzesowska-Kruszynska, R. Kruszynski, S.F.               Adil, N. K. Lokanath, J. Saudi Chem. Soc. 23 (2019) 636.
[13] J. Harrowfield, P. Thuéry, Chemistry, 2, (2020) 63.
[14] W. Apostoluk, W. Robak, SN Appl. Sci. 1 (2019) 801.
[15] Z. I. Nikolotova, N. A. Kartashova, Handbook of extraction. Extraction with               neutral organic compounds. Atomizdat, Moscow, 1 (1976) 32–37.
[16] S.Sarkar, A. Suresh, N. Sivaraman, Solvent Extraction and Ion Exchange, 38              (2020) 304.
[17] A. Suresh, T. G. Srinivasan, P. R. Vasudeva Rao, Solvent Extraction and Ion               Exchange, 27 (2009) 132.
[18] M. B. Jones, A. J. Gaunt, Chem. Rev. 113 (2013) 1137.
[19] R. J. Ellis, T. Demars, G. Liu, J. Niklas, O. G. Poluektov, I. A. Shkrob, J. Phys.           Chem. B 119 (2015) 11910.
[20] M. E. Minyaev, S. A. Korchagina, A. N. Tavtorkin, N. N. Kostitsynam A. V.               Churakov, I. E. Nifant′ev, Struct. Chem. 29 (2018) 1475.
[21] R. Murugavel, A. Choudhury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao,               Chem. Rev. 108 (2008) 3549.
[22] I. A. Charushnikova, A. M. Fedosseev, C. D. Auwer,   P. Moisy, Radiochim.               Acta,  100 (2012) 173.
[23] D. K. Maity, F. Haque, B. Dutta, B. Bhattacharya,  D. Ghoshal, J. Chem. Sci. 128        (2016)1861.
[24]  P. K. Verma, P. K. Mohapatra,  A. Bhattacharyya,   A. K. Yadav,   S. N. Jha, D.          Bhattacharyya, New J. Chem. 42 (2018) 5243.
[25] T. A. Kohlgruber, S. A. Mackley, F. D. Bo, S. M. Aksenov, P. C. Burns, J. Solid          State Chem. 279 (2019) 120938 .
[26] M. Rafizadeh, V. Amani, M. Broushaky,  Anal. Sci. 22 (2006) x113.
[27] M. E. Minyaev, S. A. Korchagina, A. N. Tavtorkin, A. V. Churakov and I. E.               Nifant'ev, Acta Crystallogr. C74 (2018) 673.
[28] R. Murugavel, S. Kuppuswamy, A. N. Maity,  M. P. Singh, Inorg. Chem.  48              (2009) 183.
[29] S. T. Disale, C. V. S. Brahmmananda Rao, Go. Gopakumar, R.V. Jayaram, J.              Coord. Chem. 72 (2019) 1480.
[30] M. Rafizadeh, V. Amani,  Anal. Sci. 22 (2006) x211.
[31] M. E. Minyaev, A. N. Tavtorkin, S. A. Korchagina, I. E. Nifant’ev, A. V.                    Churakov, Acta Crystallogr. E74 (2018) 543.
[32] M. Rafizadeh, F. Hoseinzadeh, V. Amani, Anal. Sci. 22 (2006) x3.
[33] J. Schauss, A. Kundu, B. P. Fingerhut, T. Elsaesser, J. Phys. Chem. Lett. 10       (2019) 6281.
[34] V. Amani, M. Rafizadeh, M. Yousefi, N. S. Zargar, Anal. Sci. 22 (2006) x303.
[35] G. J. Lumetta, S. I. Sinkov, J. A. Krause, L. E. Sweet, Inorg. Chem. 55 (2016)            1633.
[36] M. Rafizadeh, V. Amani, H. Aghayan,  Acta. Crystallogr. E62 (2006) m2150.
[37] M. Rafizadeh, R. Tayebee, V. Amani, M. Nasseh, Cryst. Bull. Korean Chem.              Soc. 26 (2005) 594.
[38]  M. Rafizadeh, V. Amani, H. Farajian, Z. Anorg. Allg. Chem. 633 (2007) 1143.
[39]  M. Rafizadeh, V. Amani,  Z. Anorg. Allg. Chem. 633 (2007) 2738.
[40] M. Rafizadeh, V. Amani, N. S. Mortazavi, Bull. Korean Chem. Soc. 30 (2009)           489.
[41] S. K. Gupta, G. A. Bhat, R. Murugavel, Inorg. Chem. 56 (2017) 9071.
[42] M. Rafizadeh, V. Amani, Acta. Crystallogr. E62 (2006) m1776.
[43] M. Rafizadeh, H. R. Saadati Moshtaghin, V. Amani, Acta Crystallogr. E68                 (2012) m1032.
[44] G.M. Sheldrick. SADABS. Madison, WI, USA: Bruker AXS, 1998.
[45] Bruker SMART and SAINT. Madison, WI, USA: Bruker AXS Inc. 1998.
[46] G.M. Sheldrick. Acta Crystallogr., A64 (2008) 112.
[47] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
[48] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[49] A. L.Spek, Acta Crystallogr. E76 (2020) 1.
[50] Mercury 141. Copyright Cambridge Crystallographic Data Center. Cambridge,           (2001-2005).
[51] D. Ilieva, D. Kovacheva, C. Petkov, G. Bogachev, J. Raman Spectrosc. 32 (2001)        893.
[52] R. Streck, A. J. Barnesb, W. A. Herrebout, B. J. van der Veken, J. Mol. Struct.             376 (1996) 277.
[53] J. Florian, V. Baumruk, M. Strajbl, L. Bednarova, J. Stepanek, J. Phys. Chem.            100 (1996) 1559.
[54] B. Z. Yu, W. N. Hansen, J. Ward, Appl. Spect. 43 (1989) 113.
[55] K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination                    Compounds. Part B: Applications in Coordination, Organometallic, and                       Bioinorganic Chemistry, 6th ed.; John Wiley & Sons: New York, 2009.
[56] J. G. Kim, Y. S. Park, Y. K. Ha, K. Song, J. Nucl. Sci. Techol. 46 (2009) 1188.
[57] D. M. Abd El‐Aziz, N. El‐Wakiel, M. Gaber, Appl. Organometal. Chem. 33              (2019) e4855.
[58] K. Taga, K. Miyagai, N. Hirabayashi, T. Yoshida, H. Okabayashi, J. Mol. Struct.         245 (1991) 1.
[59] C. Ibargüen, M. M. Moreno, C. Z. Hadad, J. David, A. Restrepo, Phys. Chem.            Chem. Phys. 15 (2013) 3203.
[60] A. Angeloff, J. -C. Daran, J. Bernadou, B. Meunier, J. Organomet. Chem. 624           (2001) 58.
[61] N. Budantseva, G. Andreev, A. Fedoseev, Inorg. Chem. 56 (2017) 12199.
[62] M. K. Assefa, G. Wu, T. W. Hayton. J.Am.Chem. Soc. 142 (2020) 8738.

Volume 4, Issue 1
Summer and Autumn 2020
Pages 10-19
  • Receive Date: 20 May 2020
  • Revise Date: 10 June 2020
  • Accept Date: 11 June 2020