Dye and Cobalt Electrolyte Interaction Effect on the Performance of Dye-Sensitized Solar Cell

Document Type: Research Paper

Authors

Department of Chemistry, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran

Abstract

The effects of changing ligand structures of cobalt complexes as electrolytes on the performance of the dye-sensitized solar cell were investigated. In this paper, cobalt(II/III) tris(2,2′-bipyridine), cobalt(II/III) tris(4,4′-dimethyl-2,2′-bipyridine) and cobalt(II/III) tris(4,4´-dimethoxy-2,2′-bipyridine) complexes as electrolytes in conjugate with organic dye D149 were investigated to consider the correlation of the cobalt complexes structural on the efficiency of the dye-sensitized solar cell. The Voc values of the prepared cells are related to the redox potential of their complexes and the maximum Voc was observed with cobalt(II/III) tris(2,2′-bipyridine) electrolyte. The obtained results represented that the cobalt(II/III) tris(4,4´-dimethyl- 2,2′-bipyridine) electrolyte has the highest efficiency in the solar cell compared with other cobalt complexes. These observed results have been interpreted by a possible interaction between the dye and cobalt complexes, which is more pronounced in the cobalt(II/III) tris(4,4´-dimethoxy- 2,2′-bipyridine) cell. This interaction should be fine-tuning with the structure of dye and complex to increase the efficiency of the dye-sensitized solar cell. In addition, the results demonstrated that a thinner layer of the TiO2 film decrease both the effects of mass transport issues and the charge recombination, therefore, it has significant advantages for cobalt electrolyte.

Keywords

[1] M.Z. Iqbal, S.R. Ali, S. Khan, Solar Energy 181
(2019) 490.
[2] A. Mahmood, Solar Energy 123 (2016) 127.
[3] S. Rangan, S. Katalinic, R. Thorpe, R.A. Bartynski, J.
Rochford, E. Galoppini, J. Phys. Chem. C 114 (2010)
1139.
[4] P.G. Johansson, A. Kopecky, E. Galoppini, G.J.
Meyer, J. Am. Chem. Soc. 135 (2013) 8331.
[5] G.D. Sharma, D. Daphnomili, K.S. V. Gupta, T.
Gayathri, S.P. Singh, P.A. Angaridis, T.N.
Kitsopoulos, D. Tasis, A.G. Coutsolelos, RSC Adv. 3
(2013) 22412.
[6] R. Hosokawa, S. Kuwahara, K. Katayama, J. 

Photochem. Photobiol. A: Chem. 334 (2017) 107.
[7] G. Di Carlo, A.O. Biroli, F. Tessore, S. Caramori, M.
Pizzotti, Coordination Chem. Rev. 358 (2018) 153.
[8] Q. Liu, J. Wang, Solar Energy 184 (2019) 454.
[9] S. Panagiotakis, E. Giannoudis, A. Charisiadis, R.
Paravatou, M.E. Lazaridi, M. Kandyli, K.
Ladomenou, P.A. Angaridis, H.C. Bertrand, G.D.
Sharma, A.G. Coutsolelos, European J. Inorg. Chem.
2018 (2018) 2369.
[10] V. Mallam, S. Baral, S. Gyawali, R.P. Oda, H.
Elbohy, J. Nepal, Q. Qiao, M.F. Baroughi, B.A.
Logue, Solar Energy 126 (2016) 128.
[11] G. Di Carlo, A. Orbelli Biroli, M. Pizzotti, F. Tessore,
Frontiers in Chem. 7 (2019).
[12] B. Pashaei, H. Shahroosvand, M. Graetzel, M.K.
Nazeeruddin, Chem. Rev. 116 (2016) 9485.
[13] G.E. Zervaki, V. Tsaka, A. Vatikioti, I. Georgakaki,
V. Nikolaou, G.D. Sharma, A.G. Coutsolelos, Dalton
Transactions 44 (2015) 13550.
[14] N. Sharifi, F. Tajabadi, N. Taghavinia, Chem. Phys.
Chem. 15 (2014) 3902.
[15] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G.
Luo, Chem. Rev. 115 (2015) 2136.
[16] D. Saikia, Y.C. Pan, C.G. Wu, J. Fang, L.D. Tsai,
H.M. Kao, J. Mate. Chem. C 2 (2014) 331.
[17] L. Giribabu, R. Bolligarla, M. Panigrahi, Chem.
Record 15 (2015) 760.
[18] Z.S. Wang, K. Sayama, H. Sugihara, J. Phys. Chem. B
109 (2005) 22449.
[19] G. Oskam, B. V Bergeron, G.J. Meyer, P.C. Searson,
J. Phys. Chem. B 105 (2001) 6867.
[20] T.W. Hamann, O.K. Farha, J.T. Hupp, J. Phys. Chem.
C 112 (2008) 19756.
[21] S. Hattori, Y. Wada, S. Yanagida, S. Fukuzumi, J.
Am. Chem. Soc. 127 (2005) 9648.
[22] S.C. Pradhan, A. Hagfeldt, S. Soman, J. Mater. Chem.
A 6 (2018) 22204.
[23] S.O. Fürer, B. Bozic-Weber, T. Schefer, C. Wobill,
E.C. Constable, C.E. Housecroft, M. Willger, J.
Mater. Chem. A 4 (2016) 12995.
[24] A. Colombo, G. Di Carlo, C. Dragonetti, M. Magni,
A. Orbelli Biroli, M. Pizzotti, D. Roberto, F. Tessore,
E. Benazzi, C.A. Bignozzi, L. Casarin, S. Caramori,
Inorg. Chem. 56 (2017) 14189.
[25] S.A Sapp, C.M. Elliott, C. Contado, S. Caramori, C.A.
Bignozzi, J. Am. Chem. Soc. 124 (2002) 11215.
[26] M.J. DeVries, M.J. Pellin, J.T. Hupp, Langmuir 26
(2010) 9082.
[27] C. Li, S.J. Wu, C.G. Wu, J. Mater. Chem. A 2 (2014)
17551.
[28] C.C. Clark, G.J. Meyer, Q. Wei, E. Galoppini, J. Phys.
Chem. B 110 (2006) 11044.
[29] N. Yaghoobi Nia, P. Farahani, H. Sabzyan, M.
Zendehdel, M. Oftadeh, Phys. Chem. Chem. Phys. 16
(2014) 11481.
[30] P. Salvatori, G. Marotta, A. Cinti, E. Mosconi, M.
Panigrahi, L. Giribabu, M.K. Nazeeruddin, F. De
Angelis, Inorg. Chim. Acta 406 (2013) 106.
[31] M. Freitag, W. Yang, L.A. Fredin, L. D’Amario, K.M.
Karlsson, A. Hagfeldt, G. Boschloo, Chem. Phys.
Chem. 17 (2016) 3845.
[32] T.T. Trang Pham, T.M. Koh, K. Nonomura, Y.M.
Lam, N. Mathews, S. Mhaisalkar, Chem. Phys. Chem.
2014, pp. 1216-1221.
[33] Y. Wang, Z. Sun, H. Wang, M. Liang, S. Xue, J.
Phys. Chem. C 120 (2016) 13891.
[34] M. Safdari, P.W. Lohse, L. Häggman, S. Frykstrand,
D. Högberg, M. Rutland, R.A. Asencio, J. Gardner, L.
Kloo, A. Hagfeldt, G. Boschloo, RSC Adv. 6 (2016)
56580.
[35] R. Bendoni, A.L. Barthélémy, N. Sangiorgi, A.
Sangiorgi, A. Sanson, J. Photochem. and Photobiol.
A: Chem. 330 (2016) 8.
[36] S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey,
C. Yi, M. Grätzel, M.K. Nazeeruddin, Phys. Chem.
Chem. Phys. 14 (2012) 10631.
[37] J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S.
Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E.
Moser, C. Yi, M.K. Nazeeruddin, M. Grätzel, Nature
Commun. 3 (2012) 631.
[38] X.L. Zhang, W. Huang, A. Gu, W. Xiang, F. Huang,
Z.X. Guo, Y.B. Cheng, L. Spiccia, J. Mater. Chem. C
5 (2017) 4875.
[39] H. Nusbaumer, J. Moser, S.M. Zakeeruddin, M.K.
Nazeeruddin, M. Grätzel, J. Phys. Chem. B 105
(2001) 10461.
[40] M.K. Kashif, J.C. Axelson, N.W. Duffy, C.M.
Forsyth, C.J. Chang, J.R. Long, L. Spiccia, U. Bach, J. 

Am. Chem. Soc. 134 (2012) 16646.
[41] A. Aljarilla, J.N. Clifford, L. Pellejà, A. Moncho, S.
Arrechea, P.D. La Cruz, F. Langa, E. Palomares, J.
Mater. Chem. A 1 (2013) 13640.
[42] S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G.
Boschloo, A. Hagfeldt, J. Am. Chem. Soc. 132 (2010)
16714.
[43] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker,
B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U.
Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nature
Chem. 6 (2014) 242.
[44] T.N. Murakami, N. Koumura, T. Uchiyama, Y.
Uemura, K. Obuchi, N. Masaki, M. Kimura, S. Mori,
J. Mater. Chem. A 1 (2013) 792.
[45] A. Yella, S. Mathew, S. Aghazada, P. Comte, M.
Grätzel, M.K. Nazeeruddin, J. Mater. Chem. C 5
(2017) 2833.
[46] R. Jiang, A. Anderson, P.R.F. Barnes, L. Xiaoe, C.
Law, B.C. O’Regan, J. Mater. Chem. A 2 (2014)
4751.
[47] S. Soman, S.C. Pradhan, M. Yoosuf, M. V. Vinayak,
S. Lingamoorthy, K.R. Gopidas, J. Phys. Chem. C
(2018) acs.jpcc.8b01325.
[48] T.N. Murakami, N. Koumura, M. Kimura, S. Mori,
Langmuir 30 (2014) 2274.
[49] Y. Liu, J.R. Jennings, Y. Huang, Q. Wang, S.M.
Zakeeruddin, M. Grätze, J. Phys. Chem. C 115 (2011)
18847.
[50] M. Pastore, T. Etienne, F. De Angelis, J. Mater.
Chem. C 4 (2016) 4346.
[51] P. Tahay, M. Babapour Gol Afshani, A. Alavi, Z.
Parsa, N. Safari, Phys. Chem. Chem. Phys. 19 (2017)
11187.
[52] M. Miyashita, K. Sunahara, T. Nishikawa, Y.
Uemura, N. Koumura, K. Hara, A. Mori, T. Abe, E.
Suzuki, S. Mori, J. Am. Chem. Soc. 130 (2008)
17874.
[53] H. Shahroosvand, S. Zakavi, A. Sousaraei, M.
Eskandari, Phys. Chem. Chem. Phys. 17 (2015) 6347.
[54] H. Shahroosvand, P. Abbasi, B.N. Bideh, Chem.
Select 3 (2018) 6821.
[55] J. Rochford, D. Chu, A. Hagfeldt, E. Galoppini, J.
Am. Chem. Soc. 129 (2007) 4655.
[56] L. Wu, J. Yu, L. Chen, D. Yang, S. Zhang, L. Han, M.
Ban, L. He, Y. Xu, Q. Zhang, J. Mater. Chem. C 5
(2017) 3065.
[57] B.C. O’Regan, K. Walley, M. Juozapavicius, A.
Anderson, F. Matar, T. Ghaddar, S.M. Zakeeruddin,
C. Klein, J.R. Durrant, J. Am. Chem. Soc. 131 (2009)
3541.
[58] Z. Parsa, S.S. Naghavi, N. Safari, J. Phys. Chem. A
122 (2018) 5870.
[59] T. Michinobu, N. Satoh, J. Cai, Y. Li, L. Han, J.
Mater. Chem. C 2 (2014) 3367.
[60] H. Shahroosvand, P. Abbasi, E. Mohajerani, M.
Janghouri, Dalton Transactions 43 (2014) 9202.
[61] H. Shahroosvand, F. Nasouti, A. Sousaraei, Dalton
Transactions 43 (2014) 5158.
[62] E. Ghadiri, N. Taghavinia, S.M. Zakeeruddin, M. Gra,
Fibers (2010) 1632.
[63] S. Shogh, R. Mohammadpour, A.I. Zad, N.
Taghavinia, Mater. Lett. 159 (2015) 273.
[64] N.R. De Tacconi, W. Chanmanee, K. Rajeshwar, J.
Rochford, E. Galoppini, J. Phys. Chem. C 113 (2009)
2996.
[65] K. Ladomenou, T.N. Kitsopoulos, G.D. Sharma, A.G.
Coutsolelos, RSC Adv. 4 (2014) 21379.
[66] G.D. Sharma, G.E. Zervaki, K. Ladomenou, E.N.
Koukaras, P.P. Angaridis, A.G. Coutsolelos, Journal
of Porphyrins and Phthalocyanines 19 (2015) 175.
[67] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am.
Chem. Soc. 126 (2004) 12218.
[68] X. Zong, M. Liang, C. Fan, K. Tang, G. Li, Z. Sun, S.
Xue, J. Phys. Chem. C 116 (2012) 11241.
[69] H. Nusbaumer, S.M. Zakeeruddin, J.E. Moser, M.
Grätzel, Chem. - A Europ. J. 9 (2003) 3756.
[70] M. Pastore, F. De Angelis, ACS Nano 4 (2010) 556.
[71] T. Le Bahers, T. Pauporté, G. Scalmani, C. Adamo, I.
Ciofini, Phys. Chem. Chem. Phys. 11 (2009) 11276.
[72] W.H. Howie, F. Claeyssens, H. Miura, L.M. Peter, J.
Am. Chem. Soc. 130 (2008) 1367.
[73] J.V. Alegre-Requena, E. Marques-Lopez, R.P.
Herrera, ACS Catal. 7 (2017) 6430.
[74] S.K. Singh, A. Das, Phys. Chem. Chem. Phys. 17
(2015) 9596.
[75] B.W. Gung, Y. Zou, Z. Xu, J.C. Amicangelo, D.G.
Irwin, S. Ma, H.C. Zhou, J. Org. Chem. 73 (2008)
689.

[76] A. Bondi, Van der waals volumes and radii, J. Phys.
Chem. 68 (1964) 441.
[77] T. Marinado, K. Nonomura, J. Nissfolk, M.K.
Karlsson, D.P. Hagberg, L. Sun, S. Mori, A. Hagfeldt,
Langmuir 26 (2010) 2592.
[78] B.C. O’Regan, I. López-Duarte, M.V. Martínez-Díaz,
A. Forneli, J. Albero, A. Morandeira, E. Palomares, T.
Torres, J.R. Durrant, J. Am. Chem. Soc. 130 (2008)
2906.
[79] C.C. Clark, A. Marton, R. Srinivasan, A.A. Narducci
Sarjeant, G.J. Meyer, Inorg. Chem. 45 (2006) 4728.
[80] H. Torieda, K. Nozaki, A. Yoshimura, T. Ohno, J.
Phys. Chem. A 108 (2004) 4819.
[81] K. Omata, S. Kuwahara, K. Katayama, S. Qing, T.
Toyoda, K. Lee, C. Wu, Phys. Chem. Chem. Phys. 17
(2015) 10170.
[82] E. Mosconi, J.-H. Yum, F. Kessler, C.J. Gómez
García, C. Zuccaccia, A. Cinti, M.K. Nazeeruddin, M.
Grätzel, F. De Angelis, J. Am. Chem. Soc. 134 (2012)
19438.
[83] H. Asanuma, T. Fujii, T. Kato, H. Kashida, J.
Photochem. and Photobiol. C: Photochem. Rev. 13
(2012) 124.
[84] H. Asanuma, T. Fujii, T. Kato, H. Kashida, J.
Photochem. Photobiol., C: Photochem. Rev. 13 (2012)
124.
[85] A. Arslantas, A.K. Devrim, H. Necefoglu, Mol. Sci. 8
(2007) 1225.
[86] Q.L. Zhang, J.G. Liu, H. Xu, H. Li, J.Z. Liu, H. Zhou,
L.H. Qu, L.N. Ji, Polyhedron 20 (2001) 3049.
[87] R.S. Kumar, S. Arunachalam, Polyhedron 25 (2006)
3113.


Volume 3, Issue 2
Summer and Autumn 2019
Pages 145-157
  • Receive Date: 09 February 2020
  • Accept Date: 21 April 2020