Platinum-oxygen Bond Formation: Kinetic and Mechanistic Studies

Document Type : Research Paper

Authors

1 Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71467-13565, Iran

2 Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz 71993-37635, Iran

Abstract

Reaction of [PtMe(C^N)(SMe2)] (C^N = 2-phenylpyridinate (ppy); 1a, C^N = benzo[h]quinolate, (bhq); 1b) with hydrogen peroxide gives the platinum(IV) complexes trans-[PtMe(OH)2(C^N)(H2O)] (C^N = ppy; 3a, C^N = bhq, 3b) bearing platinum-oxygen bonds. The Pt(II) complexes 1a and 1b have 5dπ(Pt)→π*(C^N) MLCT band in the visible region which is used to easily follow the kinetic of its reaction with H2O2. The kinetics and mechanism of Pt−O bond formation have been experimentally and theoretically investigated, showing the simple second-order kinetics; rate = k2[H2O2][Pt(II) complex]. The Pt(IV) products were characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Pt-O bonds were also studied by means of the density functional theory. Complex 3b is unstable during the crystallization process in CH2Cl2/acetone and gives the binuclear complex [Pt2Me2(Cl)2(μ-OH)2(bhq)2], 4.

Keywords


[1] J.P. Collman, Priciples and Applications of
Organotransition Metal Chemistry, University Science
Books, 1987.
[2] S.G. Davies, Organotransition Metal Chemistry:
Applications to Organic Synthesis: Applications to
Organic Synthesis, Elsevier, 2013.
[3] L.M. Rendina, R.J. Puddephatt, Chem. Rev. 97 (1997)
1735.
[4] M. Crespo, M. Martinez, S.M. Nabavizadeh, M.
Rashidi, Coord. Chem. Rev. 279 (2014) 115.
[5] P.J. Craig, R. Jenkins, in Organic Metal and Metalloid
Species in the Environment, Springer, 2004, pp. 1-15.
[6] J.F. Hartwig, Nature 455 (2008) 314.
[7] J.A. Labinger, J.E. Bercaw, Nature 417 (2002) 507.
[8] A.E. Shilov, G.B. Shul'pin, Chem. Rev. 97 (1997)
2879.
[9] S.M. Nabavizadeh, S.J. Hoseini, B.Z. Momeni, N.
Shahabadi, M. Rashidi, A.H. Pakiari, K. Eskandari,
Dalton Trans. (2008) 2414.
[10] S.M. Nabavizadeh, E.S. Tabei, F.N. Hosseini, N.
Keshavarz, S. Jamali, M. Rashidi, New J. Chem. 34
(2010) 495.
[11] S.M. Nabavizadeh, H.R. Shahsavari, H. Sepehrpour,
F.N. Hosseini, S. Jamali, M. Rashidi, Dalton Trans.
39 (2010) 7800.
[12] C.M. Anderson, R.J. Puddephatt, G. Ferguson, A.J.
Lough, J. Chem. Soc. Chem. Commun. (1989) 1297.
[13] C. Anderson, M. Crespo, Organometallics 10 (1991)
2672.
[14] M. Rashidi, S.M. Nabavizadeh, A. Akbari, S.
Habibzadeh, Organometallics 24 (2005) 2528.
[15] S.M. Nabavizadeh, S. Habibzadeh, M. Rashidi, R.J.
Puddephatt, Organometallics 29 (2010) 6359.
[16] N.H. Fatemeh, Z. Farasat, S.M. Nabavizadeh, G. Wu,
M.M. Abu-Omar, J. Organomet. Chem. 880 (2019)
232.
[17] P. Hamidizadeh, S.M. Nabavizadeh, S.J. Hoseini,
Dalton Trans. 48 (2019) 3422.
[18] M.D. Aseman, S.M. Nabavizadeh, F. Niroomand
Hosseini, G. Wu, M.M. Abu-Omar, Organometallics
37 (2018) 87.
[19] F. Niroomand Hosseini, S.M. Nabavizadeh, M.M.
Abu-Omar, Inorg. Chem. 56 (2017) 14706.
[20] S. Chamyani, H.R. Shahsavari, S. Abedanzadeh, M.
Golbon Haghighi, S. Shabani, B. Notash, Appl.
Organomet. Chem. 33 (2019) e4674.
[21] F. Niroomand Hosseini, Inorg. Chem. Res. 2 (2019)
26.
[22] A. Kritchenkov, Y.M. Stanishevskii, Y.A. Skorik,
Pharm. Chem. J. 53 (2019) 6.
[23] N. El Brahmi, S.M. Mignani, J. Caron, S. El Kazzouli,
M.M. Bousmina, A.-M. Caminade, T. Cresteil, J.-P.
Majoral, Nanoscale 7 (2015) 3915.
[24] S. Choi, C. Filotto, M. Bisanzo, S. Delaney, D.
Lagasee, J.L. Whitworth, A. Jusko, C. Li, N. A.
Wood, J. Willingham, Inorg. Chem. 37 (1998) 2500.
[25] D. Watts, D. Wang, M. Adelberg, P.Y. Zavalij, A.N.
Vedernikov, Organometallics 36 (2016) 207.
[26] A.R. Petersen, A.J. White, G.J. Britovsek, Dalton
Trans. 45 (2016) 14520.
[27] M. Azizpoor Fard, A. Behnia, R.J. Puddephatt,
Organometallics 36 (2017) 4169.
[28] A.N. Vedernikov, Acc. Chem. Res. 45 (2011) 803.
[29] E.M. Prokopchuk, H.A. Jenkins, R.J. Puddephatt,
Organometallics 18 (1999) 2861.
[30] N. Nasser, M.A. Fard, P.D. Boyle, R.J. Puddephatt, J.
Organomet. Chem. 858 (2018) 67.
[31] K.-T. Aye, J.J. Vittal, R.J. Puddephatt, J. Chem. Soc.
Dalton Trans. (1993) 1835.
[32] M. Rashidi, M. Nabavizadeh, R. Hakimelahi, S.
Jamali, J. Chem. Soc. Dalton Trans. (2001) 3430.
[33] F.N. Hosseini, M. Rashidi, S.M. Nabavizadeh, J. Mol.
Struc. 1125 (2016) 20.
[34] C.T. Lam, C.V. Senoff, Can. J. Chem. 51 (1973)
3790.
[35] R.T. Mehdi, J.D. Miller, J. Chem. Soc. Dalton Trans.
(1984) 1065.
[36] J.S. Owen, J.A. Labinger, J.E. Bercaw, J. Am. Chem.
Soc. 126 (2004) 8247.
[37] S.M. Nabavizadeh, M.G. Haghighi, A.R. Esmaeilbeig,
F. Raoof, Z. Mandegani, S. Jamali, M. Rashidi, R.J.
Puddephatt, Organometallics 29 (2010) 4893.
[38] G. Sheldrick, SADABS, Empirical Absorption
Correction Program; University of Göttingen:
Germany, 1997, 2005.
[39] SHELXTL PC, Version 6.12, Bruker AXS Inc. 
Madison, WI, 2005.
[40] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M.
Robb, J. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. Petersson, Gaussian 09, Revision A. 02;
Gaussian, Inc: Wallingford, CT, 2009
[41] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270.
[42] M.A. Fard, A. Behnia, R.J. Puddephatt, J. Organomet.
Chem. 890 (2019) 32.
[43] V.V. Rostovtsev, L.M. Henling, J.A. Labinger, J.E.
Bercaw, Inorg. Chem. 41 (2002) 3608.
[44] K. Thorshaug, I. Fjeldahl, C. Rømming, M. Tilset,
Dalton Trans. (2003) 4051.
[45] F. Zhang, E.M. Prokopchuk, M.E. Broczkowski, M.C.
Jennings, R.J. Puddephatt, Organometallics 25 (2006)
1583.
[46] G.R. Fulmer, A.J. Miller, N.H. Sherden, H.E.
Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, K.I.
Goldberg, Organometallics 29 (2010) 2176.
[47] L.A. Wickramasinghe, P.R. Sharp, Inorg. Chem. 53
(2014) 1430.
Volume 3, Issue 2
Autumn and Winter
2019
Pages 117-128
  • Receive Date: 03 December 2019
  • Revise Date: 27 December 2019
  • Accept Date: 28 December 2019