Determination of Reaction Kinetic Parameters from Variable Temperature Kinetic Study for Oxidative Addition Reaction on Binuclear Cyclometalated Platinum(II) Complexes

Document Type: Research Paper

Author

Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, 71993-37635, Iran

Abstract

The pseudo-first order rate constants and activation parameters have been determined using two methods, constant-temperature kinetic (CTK) and variable temperature kinetic (VTK), for the oxidative addition reactions of [Pt2Me2(C^N)2(µ-dppf)], (1a, C^N = deprotonated 2-phenylpyridine (ppy); 1b, C^N = deprotonated benzo[h]quinoline (bhq)) with MeI. The results obtained from VTK method are in agreement with those obtained at CTK method, but there are significant advantages to determine the kinetic reaction parameters under VTK method including time and chemicals saving.

Keywords

[1] J.D. Atwood, Inorganic and Organometallic Reaction
Mechanisms, VCH Publishers, 1997.

[2] J.P. Collman, L.S. Hegedus, A. Kelly, Principles and
Applications of Organotransition Metal Chemistry,
University Science Books Mill Valley, CA, 1980.
[3] R.H. Crabtree, The Organometallic Chemistry of the
Transition Metals, John Wiley & Sons, 2009.
[4] P. Hamidizadeh, S.M. Nabavizadeh, S.J. Hoseini,
Dalton Trans. 48 (2019) 3422.
[5] H.R. Shahsavari, R. Babadi Aghakhanpour, M.
Babaghasabha, M. Golbon Haghighi, S.M.
Nabavizadeh, B. Notash, Eur. J. Inorg. Chem. (2017)
2682.
[6] S.M. Nabavizadeh, S.J. Hoseini, B.Z. Momeni, N.
Shahabadi, M. Rashidi, A.H. Pakiari, K. Eskandari,
Dalton Trans. (2008) 2414.
[7] L.M. Rendina, R.J. Puddephatt, Chem. Rev. 97 (1997)
1735.
[8] M. Crespo, M. Martinez, S.M. Nabavizadeh, M.
Rashidi, Coord. Chem. Rev. 279 (2014) 115.
[9] F. Niroomand Hosseini, Z. Farasat, S.M.
Nabavizadeh, G. Wu, M.M. Abu-Omar, J.
Organomet. Chem. 880 (2019) 232.
[10] S.J. Hoseini, S.M. Nabavizadeh, S. Jamali, M.
Rashidi, Eur. J. Inorg. Chem. (2008) 5099.
[11] S. Jamali, S.M. Nabavizadeh, M. Rashidi, Inorg.
Chem. 44 (2005) 8594.
[12] S. Jamali, S.M. Nabavizadeh, M. Rashidi, Inorg.
Chem. 47 (2008) 5441.
[13] V. Sicilia, M. Baya, P. Borja, A. Martín, Inorg. Chem.
54 (2015) 7316.
[14] M.A. Casado, J.J. Pérez-Torrente, M.A. Ciriano, I.T.
Dobrinovitch, F.J. Lahoz, L.A. Oro, Inorg. Chem. 42
(2003) 3956.
[15] M. Konrad, S. Wuthe, F. Meyer, E. Kaifer, Eur. J.
Inorg. Chem. (2001) 2233.
[16] C. Tejel, M.A. Ciriano, J.A. López, F.J. Lahoz, L.A.
Oro, Organometallics 19 (2000) 4977.
[17] S. Jamali, R. Czerwieniec, R. Kia, Z. Jamshidi, M.
Zabel, Dalton Trans. 40 (2011) 9123.
[18] S.M. Nabavizadeh, M.D. Aseman, B. Ghaffari, M.
Rashidi, F.N. Hosseini, G. Azimi, J. Organomet.
Chem. 715 (2012) 73.
[19] G. Alibrandi, Inorg. Chim. Acta 221 (1994) 31.
[20] G. Alibrandi, S. D’Aliberti, R. Pedicini, Chem.
Educator 6 (2001) 185.
[21] R. Romeo, G. Alibrandi, Inorg. Chem. 36 (1997)
4822.
[22] R. Romeo, G. D'Amico, E. Sicilia, N. Russo, S.
Rizzato, J. Am. Chem. Soc. 129 (2007) 5744.
[23] F.N. Hosseini, Transition Met. Chem. 38 (2013) 699.
[24] MicroMath Scientific Software, Salt Lake City, UT
1995, p. 84121.


Volume 3, Issue 1
Summer and Autumn 2019
Pages 26-31
  • Receive Date: 31 May 2019
  • Revise Date: 09 June 2019
  • Accept Date: 10 June 2019