Naphthalene-based Azo-azomethine Chemosensor: Naked Eye Detection of Fluoride in Semi-aqueous Media

Document Type : Research Paper

Authors

Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

Abstract

A new azo-azomethine chemosensor containing active phenolic sites, H2L, has been designed and synthesized for rapid detection of inorganic fluoride over the other anions, such as Clˉ, Brˉ, Iˉ, AcOˉ, H2PO4ˉ, NO3ˉ, N3ˉ in DMSO/water (90/10) media. The 1H NMR titration revealed that the colorimetric response was considered to be the direct consequence of hydrogen-bond formation between phenolic groups of the receptor and fluoride ion followed by deprotonation. The anions recognition ability of H2L was also evaluated using UV-Vis spectroscopy. Importantly, H2L can detect inorganic fluoride even at 2.04×10-6 M level, which is lower than the World Health Organization (WHO) permissible level. Interestingly, H2L was used for qualitative detection of fluoride anion in commercially available mouthwash and toothpaste.

Keywords


[1] P.A. Gale, C. Caltagirone, Chem. Soc. Rev. 44 (2015)
4212.
[2] Q.S. Lu, L. Dong, J. Zhang, L. Jiang, Y. Huang, S.
Qin, C.W. Hu, X.Q. Yu, Org. Lett. 11 (2009) 669.
[3] H.J. Schneider, A. Yatsimirsky, Chem. Soc. Rev. 37
(2008) 263.
[4] A. Basu, S.K. Dey, G. Das, RSC Adv. 3 (2013) 6596.
[5] S. Sharma, M.S. Hundal, G. Hundal, Tetrahedron
Lett. 54 (2013) 2423.
[6] X. Yong, M. Su, W. Wan, W. You, X. Lu, J. Qu, R.
Liu, New J. Chem. 37 (2013) 1591.
[7] S. Kumar, R. Saini, D. Kaur, Sens. Actuators, B 160
(2011) 705.
[8] W. Zhuang, W. Liu, J. Wu, H. Zhang, P. Wang,
Specterochim. Acta Part A 79 (2011) 1352.
[9] Q.Q. Wang, V.W. Day, K. Bowman-James, Chem.
Sci. 2 (2011) 1735.
[10] R.J. Fitzmaurice, G.M. Kyne, D. Douheret, J.D.
Kilburn, J. Chem. Soc., Perkin Trans. 1 (2002) 841.
[11] S. Sen, M. Mukherjee, K. Chakrabarty, I. Hauli, S.K.
Mukhopadhyay, P. Chattopadhyay, Org. Biomol.
Chem. 11 (2013) 1537.
[12] W.N. Lipscomb, N. Strater, Chem. Rev. 96 (1996)
2375.
[13] R. Sakai, E.B. Barasa, N. Sakai, S. Sato, T. Satoh, T.
Kakuchi, Macromolecules 45 (2012) 8221.
[14] C. Jin, M. Zhang, C. Deng, Y. Guan, J. Gong, D.
Zhu, Y. Pan, J. Jiang, L. Wang, Tetrahedron Lett. 54
(2013) 796.
[15] J.-Q. Li, T.-B. Wei, Q. Lin, P. Li, Y.-M. Zhang,
Specterochim. Acta Part A 83 (2011) 187.
[16] M. Khandelwal, I.C. Hwang, P.C.R. Nair, J. Fluorine
Chem. 135 (2012) 339.
[17] P. Sokkalingam, C.-H. Lee, J. Org. Chem. 76 (2011)
3820.
[18] M. Cametti, K. Rissanen, Chem. Soc. Rev. 42 (2013)
2016.
[19] S. Kubik, Chem. Soc. Rev. 39 (2010) 3648.
[20] H. Khanmohammadi, K. Rezaeian, M.M. Amini, S.W.
Ng, Dyes and Pigments 98 (2013) 557.
[21] H. Khanmohammadi, K. Rezaeian, Specterochim.
Acta Part A 97 (2012) 652.
[22] H. Khanmohammadi, A. Abdollahi, Dyes and
Pigments 94 (2012) 163.
[23] H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71
(1949) 2703.
[24] S. Das, D. Saha, C. Bhaumik, S. Dutta, S. Baitalik,
Dalton Trans. 39 (2010) 4162.
[25] R.K. Duke, E.B. Veale, F.M. Pfeffer, P.E. Kruger, T.
Gunnlaugsson, Chem. Soc. Rev. 39 (2010) 3936.
[26] P. Thiampanya, N. Muangsin, B. Pulpoka, Org. Lett.
14 (2012) 4050.