The Kinetic and Thermal Degradation Studies of N-(4-Acetyl-phenyl)-acetimidic Acid Pyridine-3-yl ester Metal(II) Complexes

Document Type : Research Paper

Authors

1 Dept of chemistry Dr H S Gour University Sagar

2 Dept of Chemistry Dr H S Gour University Sagar

Abstract

Schiff base complexes of transition metals are of particular interest to inorganic chemists because of their structural, spectral and chemical properties, which are often strongly dependant on the nature of the ligand structure. Large number of metal (II) complexes with Schiff-base ligands has been extensively studied for their interesting structural specialties, applications and properties. The coordination complexes of [Co(C15H15N2O2)2(H2O)2]. Cl2.2H2O and [Cu(C15H15N2O2)2(H2O)2].Cl2 with the Schiff base N-(4-Acetyl-phenyl)-acetimidic acid pyridine-3-yl ester derived from 4-aminoacetophenone with 3-acetoxypyridine have been synthesized and characterized by micro analytical data; FT-ir, UV-vis, FAB- mass and thermal analysis studies. Thermal data show degradation of complexes. We carried out thermal analysis at 10 . The activation thermodynamic parameters, such as activation energy (E*), entropy of activation (DS*), enthalpy of activation (DH*) and Gibbs free energy (DG*) have been calculated with the help of TG, DTA and DTG curves using Coats–Redfern (C-R) method. The stoichiometry of the complexes are in 1:2 (M:L) molar ratio. Synthesized complex has been tested for their reactivity and substitution behavior.

Keywords


[1] M.E. Brown, D. Dollimore, A.K. Galwey.
Comprehensive Chemical Kinetics, Amsterdam:
Elsevier, 1980.
[2] M.E. Brown. Techniques and Applications, 2nd
edition, Kluwer Academic Publishers; London, 2001.
[3] A.S.A. Zidan, Synth. React. Inorg. Met.-org. Chem.
31 (2001) 457.
[4] A.A.M. Gad, Egypt J. Sol. 27 (2004) 89.
[5] J.K. Mano, D. Koniarova, R.L. Reis, J. Mater. Sci.:
Mater. Med. 14 (2003) 127.
[6] A.P. Mishra, M. Soni, Metal-Based Drugs (2008).
[7] J.A. Conesa, A. Marcilla, J.A. Caballero, R. Font, J.
Anal. Appl. Pyrol. 58/59 (2001) 617.
[8] G. Varhegyi, P. Sazabo, E. Jakab, F. Till, J. Anal.
Appl. Pyrol. 57 (2001) 203.
[9] J.A. Caballero, J.A. Conesa, J. Anal. Appl. Pyrolysis
73 (2005) 85.
[10] H.J. Chen, K.M. Lai, J. Chem. Eng. Japan 37 (2004)
1172.
[11] M. Ahmaruzzaman, D.K. Sharma, J. Anal. Appl.
Pyrolysis 73 (2005) 263.
[12] V.S. Vacla, P. Susak, J. Anal. Appl. Pyrolysis 72
(2004) 249.
[13] L.T. Vlaev, I.G. Markovska, L.A. Lyubchev,
Thermochimica Acta 406 (2003) 1.
[14] S. Srikanth, M. Chakravortty, Thermochimica Acta
370 (2001) 141.
[15] E.H.M. Diefallah, M.A. Gabal, A.A. El-Bellihi, N.A.
Eissa, Thermochimica Acta 376 (2001) 43.
[16] S. Shukla, A.P. Mishra, J. Indian Council of Chemist.
29 (2012) 82.
[17] H. Hu, Q Chen, Z. Yin, P. Zhang, J. Zou, H. Che,
Thermochimica Acta 389 (2002) 79.
[18] S. Shukla, A.P. Mishra, J. Therm. Anal. Calorim. 107
(2012) 111.
[19] R.K. Jain, A.P. Mishra, P. Gupta, J. Therm. Anal.
Calorim. 110 (2012) 529.
[20] R.N. Singru, Arch. Appl. Sci. Res. 3 (2011) 309.
[21] D. Shukla, L.K. Gupta, S. Chandra, Spectrochim.
Acta 71A (2008) 746.
[22] S. Shukla, A.P. Mishra, JICC 29 (2012) 82.
[23] N. Ray, L. Hulett, R. Sheahan, B.J. Hathaway, Inorg.
Nucl. Chem. Lett. 14 (1978) 305.
[24] B.J. Hathway, R.E. Faraday, Coord. Chem. Rev. 5
(1970).
[25] M.J. Bew, B.J. Hathaway, J. Chem. Soc. Dalton
Trans. (1972) 1229.
[26] B.J. Hathaway, A.A.G. Tomilson, Coord. Chem. Rev.
5 (1970) 1.
[27] A.H. Maki, B.R. Me Garvery, J. Chem. Physc. 29
(1958) 31 & 35.
[28] B.J. Hathway, Struct. Bonding 14 (1973) 49.
Volume 2, Issue 1
Autumn and Winter
2018
Pages 152-161
  • Receive Date: 30 November 2016
  • Revise Date: 21 August 2017
  • Accept Date: 01 September 2017